您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 210-214.doi: 10.6040/j.issn.1672-3961.0.2017.175

• • 上一篇    下一篇

基于滑模观测器的异步电动机速度传感器故障诊断及容错控制

谢晓龙,姜斌*,刘剑慰,蒋银行   

  1. 南京航空航天大学自动化学院, 江苏 南京 211100
  • 收稿日期:2017-02-10 出版日期:2017-10-20 发布日期:2017-02-10
  • 通讯作者: 姜斌(1966— ),男, 江西鄱阳人,教授,博士生导师,主要研究方向为故障诊断与容错控制.E-mail: binjiang@nuaa.edu.cn E-mail:xxlong@nuaa.edu.cn
  • 作者简介:谢晓龙(1994— ),男,安徽阜阳人,硕士研究生,主要研究方向为高铁故障诊断.E-mail: xxlong@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61490703),国家商用飞机制造工程技术研究中心创新基金资助项目(SAMC14-JS-15-053),中央高校基本科研业务费专项资金资助项目(NJ20150011)

Fault diagnosis and fault tolerant control based on sliding mode observer for speed sensor in asynchronous motor

XIE Xiaolong, JIANG Bin*, LIU Jianwei, JIANG Yinhang   

  1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, Jiangsu, China
  • Received:2017-02-10 Online:2017-10-20 Published:2017-02-10

摘要: 针对异步电动机矢量控制系统中速度传感器故障问题,提出基于滑模观测器的故障诊断及容错控制方法。通过坐标变换的方法建立异步电动机的状态空间模型,从而构造滑模观测器,并使用李雅普诺夫稳定性理论求解稳定性条件并给出转速自适应律;设计矢量控制系统的转速切换策略,当残差信号大于给定阈值时使系统切换到无速度传感器矢量控制方式,保持异步电动机稳定运行。仿真结果表明该方法可以在0.2 s内实现故障检测,并使系统稳定运行,体现出该方法的快速性和有效性。

关键词: 故障诊断, 容错控制, 异步电动机, 滑模观测器, 速度估计

Abstract: Aiming at the fault appearing in speed sensor of asynchronous motor in vector control system, a sliding-mode observer based fault diagnosis and fault tolerant control method was proposed. The state space model of asynchronous motor was established by coordinate transformation method, the sliding mode observer was then constructed the stability conditions and speed adaptive law were derived by Lyapunov stability theory. The switching control strategy was designed to guarantee the safety of the induction motor, which changed system working mode into speed sensorless vector control when the residuals were larger than the given thresholds. The developed method could detect faults within 0.2 s and recover the performance of the system, whose rapidity and effectiveness was validated via a simulation experiment.

Key words: induction motors, sliding-mode observer, speed estimation, fault diagnosis, fault-tolerant control

中图分类号: 

  • TM346
[1] 阳同光. HXD1型电力机车异步牵引电机故障诊断方法研究[D]. 长沙: 中南大学, 2013. YANG Tongguang. Fault diagnosis about asynchronous traction motor of HXD1 electric locomotive[D]. Changsha: Central South University, 2013.
[2] 于泳, 蒋生成, 王高林,等. 基于状态观测器的感应电机速度传感器故障诊断及容错控制[J]. 中国电机工程学报, 2012, 32(18): 123-130. YU Yong, JIANG Shengcheng, WANG Gaolin, et al. Fault diagnosis and tolerant control for speed sensors based on state observers in induction motor drives[J]. Proceedings of the Chinese Society for Electrical Engineering, 2012, 32(18): 123-130.
[3] 吴彬. 基于模型的故障诊断技术及其在电动舵机上的应用[D]. 湘潭: 湘潭大学, 2008. WU Bin. The fault diagnosis technology based on models and its application in the electro-mechanical actuator[D]. Xiangtan: Xiangtan University, 2008.
[4] 姜斌, 冒泽慧,杨浩, 等. 控制系统的故障诊断与故障调节[M]. 北京: 国防工业出版社, 2009: 62-66.
[5] CHEN J, PATTON R J. Robust model-based fault diagnosis for dynamic systems[M]. Boston, USA: Kluwer Academic Publishers, 1999: 2-5.
[6] 王梓源. 变频器的传感器故障诊断与容错控制[D]. 哈尔滨: 哈尔滨工业大学, 2015. WANG Ziyuan. Resarch on sensors fault diagnosis and tolerant control of inverter[D]. Harbin: Harbin Institute of Technology, 2015.
[7] JIANG B, STAROSWIECKI M, COCQUEMPOT V. Fault accommodation for nonlinear dynamic systems [J]. IEEE Transactions on Automatic Control, 2006, 51(9): 1578-1583.
[8] JIANG B, STAROSWIECKI M, COCQUEMPOT V. Fault diagnosis based on adaptive observer for a class of non-linear systems with unknown parameters [J]. International Journal of Control, 2004, 77(4): 367-383.
[9] SHARMA R, ALDEEN M. Design of integral sliding mode observers with application to fault and unknown input reconstruction[C] // Proceedings of CDC-09. New York, USA:IEEE, 2009:6958-6963.
[10] ZHANG J, SWAIN A K, NGUANG S K. Detection and isolation of incipient sensor faults for a class of uncertain non-linear systems[J]. Iet Control Theory & Applications, 2012, 6(12): 1870-1880.
[11] HAO J F, KANG J S, SHI X M, et al. Robust sliding mode observer fault diagnosis and its application to nonlinear systems[C] //Proceedings of ICICIEE-12. Washington, USA: IEEE Computer Society, 2012: 1450-1453.
[12] 富历新. 一种光电码盘输出线断路检测和保护电路[J]. 微电机, 1993(3): 56-57. FU Lixin. Circuit breaker detection and protection circuit for photoelectric encoder output line[J]. Micromotors Servo Technique, 1993(3): 56-57.
[13] 刘艳, 齐晓燕. 感应电机龙伯格——滑模观测器参数辨识方法[J]. 电机与控制学报, 2011, 15(8):93-100. LIU Yan, QI Xiaoyan. An Luenberger-sliding mode observer parameter dentification for induction motors[J]. Electric Machines and Control, 2011, 15(8): 93-100.
[14] ZHAO L, HUANG J, LIU H, et al. Second-order sliding-mode observer with online parameter identification for sensorless induction motor drives[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10): 5280-5289.
[15] ZIDANI F F, DIALLO D, BENBOUZID M E H, et al. Diagnosis of speed sensor failure in induction motor drive[C] //Proceedings of IEMDC-07. New York, USA: IEEE, 2007: 1680-1684.
[16] TABBACHE B, BENBOUZID M E H, KHELOUI A, et al. Virtual-sensor-based maximum-likelihood voting approach for fault-tolerant control of electric vehicle powertrains[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1075-1083.
[17] BOUKHNIFER M, RAISEMCHE A, DIALLO D, et al. Fault tolerant control to mechanical sensor failures for induction motor drive: a comparative study of voting algorithms[C] //Proceedings of IECON-13. New York, USA: IEEE, 2013: 2851-2856.
[18] BERRIRI H, NAOUAR M W, SLAMA-BELKHODJA I. Easy and fast sensor fault detection and isolation Algorithm for electrical drives[J]. IEEE Transactions on Power Electronics, 2012, 27(2): 490-499.
[19] 周东华. 控制系统的故障检测与诊断技术[M]. 北京: 清华大学出版社, 1994: 240-244.
[20] 李卓, 卢子广. 基于滑模观测器的异步电机无速度传感器控制[J]. 电气传动, 2016, 46(7): 12-15. LI Zhuo, LU Ziguang. Speed-sensorless control of induction motor based on sliding mode observer[J]. Electric Drive, 2016, 46(7): 12-15.
[21] 阮毅, 陈伯时. 电力拖动自动控制系统[M]. 北京: 机械工业出版社, 2012: 170-188.
[1] 程鑫,张林,胡业发,陈强,梁典. 基于电流特性的主动磁轴承电磁线圈故障诊断[J]. 山东大学学报(工学版), 2018, 48(4): 94-101.
[2] 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80.
[3] 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21.
[4] 叶丹,张天予,李奎. 全局信息未知的多智能体自适应容错包容控制[J]. 山东大学学报(工学版), 2017, 47(5): 1-6.
[5] 宋洋,钟麦英. 基于改进距离相似度的故障可分离性分析方法[J]. 山东大学学报(工学版), 2017, 47(5): 103-109.
[6] 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14.
[7] 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70.
[8] 褚振忠,朱大奇. 基于自适应区域跟踪的自主式水下机器人容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 57-63.
[9] 黄成凯,杨浩,姜斌,程舒瑶. 一类复杂网络的协同容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 203-209.
[10] 邱路,叶银忠,姜春娣. 基于小波奇异熵和SOM神经网络的微电网系统故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 118-122.
[11] 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194.
[12] 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245.
[13] 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222.
[14] 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237.
[15] 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!