您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 27-33.doi: 10.6040/j.issn.1672-3961.0.2016.340

• • 上一篇    下一篇

基于视觉中心转移的视觉显著性检测方法

胡金戈,唐雁   

  1. 西南大学计算机与信息科学学院, 重庆 400715
  • 收稿日期:2016-08-27 出版日期:2017-06-20 发布日期:2016-08-27
  • 通讯作者: 唐雁(1965— ),女,重庆人,教授,硕士生导师,主要研究方向为人工智能,web应用与数据挖掘等.E-mail:ytang@swu.edu.cn E-mail:445441787@qq.com
  • 作者简介:胡金戈(1991— ),女,重庆人,硕士研究生,主要研究方向为视觉显著性检测.E-mail:445441787@qq.com
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(XDJK2015C110)

Visual saliency detection based on visual center shift

HU Jinge, TANG Yan   

  1. College of Computer and Information Science, Southwest University, Chongqing 400715, China
  • Received:2016-08-27 Online:2017-06-20 Published:2016-08-27

摘要: 针对现有许多检测方法提取出的显著性区域不够清晰的问题,提出一种基于视觉中心偏移的视觉显著性检测方法,在对图像进行预分割的基础上,结合图像的颜色对比特征、颜色分布特征和位置特征,提取出图像显著性区域,利用视觉中心转移模拟人类视野系统的视野转移过程,对图像进行多尺度分析,融合不同尺度显著图得到最终显著图。试验结果表明,本方法较现有显著性检测方法在视觉效果和查准率召回率有明显提高,ROC曲线下的面积可达0.952。

关键词: 多尺度分析, 图像分割, 显著图, 中心转移, 视觉显著性

Abstract: Many existing detection methods could not extract saliency regions clearly. A novel saliency detection method based on visual center offsetting was proposed. On the basis of images' pre-segmentation, combining with color contrast features, color distribution features and location features, saliency region of an image was extracted. The center offsetting was used to simulate the vision transfer process of human, after multi-scale analysis, by fusing saliency maps at different scales. The final saliency map was computed. The results showed that the performance of the proposed method was better on visual effect and the precision recall rate than existing methods, the area under ROC curve was 0.952.

Key words: saliency map, multi-scale, image segmentation, visual saliency, center shift

中图分类号: 

  • TP391
[1] GONZALEZ R C.数字图像处理[M].北京:电子工业出版社, 2006.
[2] JUDD Tilke, EHINGER Krista, DURAND Frédo, et al. Learning to predict where humans look[J]. Proceedings, 2009, 30(2):2106-2113.
[3] NAVALPAKKAM Vidhya, ITTI Laurent. An integrated model of top-down and bottom-up attention for optimizing detection speed[J]. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 2:2049-2056.
[4] FRITZ Gerald, SEIFERT Christin, PALETTA Lucas, et al. Attentive object detection using an information theoretic saliency measure[J]. Lecture Notes in Computer Science, 2004, 3368:29-41.
[5] BUTKO N J, MOVELLAN J R. Optimal scanning for faster object detection[C] //Computer Vision and Pattern Recognition. Losalamitos, CA, United States: Los Alamitos, 2009:2751-2758.
[6] HAN Sunhyoung, VASCONCELOS Nuno. Biologically plausible saliency mechanisms improve feedforward object recognition[J].Vision Research, 2010, 50(22):2295-2307.
[7] YAO Hong. TsaiHierarchical salient point selection for image retrieval[J].Pattern Recognition Letters, 2012, 33(33):1587-1593.
[8] WALTHER Dirk Koch Christof. Modeling attention to salient proto-objects[J]. Neural Networks the Official Journal of the International Neural Network Society, 2006, 19(9):1395-1407.
[9] LI Liang, JIANG Shuqiang, ZHA Zhengjun, et al. Partial-duplicate image retrieval via saliency-guided visual matching[J]. IEEE Multimedia, 2013, 20(3):13-23.
[10] BAI Xuefei, WANG Wenjian. Saliency-SVM: an automatic approach for image segmentation[J]. Neurocomputing, 2014, 136(8):243-255.
[11] GUO Mingwei, ZHAO Yuzhou, ZHANG Chenbin, et al. Fast object detection based on selective visual attention[J]. Neurocomputing, 2014, 144(1):184-197.
[12] ITTI Laurent, KOCH Christof, NIEBUR Ernst. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1998, 20(11):1254-1259.
[13] MA Yufei, ZHANG Hongjiang. Contrast-based image attention analysis by using fuzzy growing[C] //Eleventh ACM International Conference on Multimedia. New York, USA: ACM, 2003:374-381.
[14] ZHAI Yun, SHAH Mubarak. Visual attention detection in video sequences using spatiotemporal cues[C] //ACM International Conference on Multimedia. New York, USA: ACM, 2006:478-482.
[15] HOU Xiaodi, ZHANG Liqing. SALIENCY Detection: a spectral residual approach[C] // IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, USA: IEEE Computer Society, 2007:1-8.
[16] ZHANG Lingyun, TONG Matthew H, MARKS Tim K, et al. SUN: a bayesian framework for saliency using natural statistics[J]. Journal of Vision, 2008, 8(7):1-20.
[17] BRUCE Neil D B, TSOTSOS John K. Saliency, attention, and visual search: an information theoretic approach.[J]. Journal of Vision, 2009, 9(3):1-24.
[18] ACHANTA Radhakrishna, HEMAMI Sheila, ESTRADA Francisco, et al. Frequency-tuned salient region detection[C] //IEEE International Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2009:1597-1604.
[19] GUO Chenlei, MA Qi, ZHANG Liming. Spatio-temporal Saliency detection using phase spectrum of quaternion fourier transform[C] //2013 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA:IEEE, 2008:1-8.
[20] ACHANTA Radhakrishna, SHAJI Appu, SMITH Kevin, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11):2274-2282.
[21] TATLER Benjamin W. The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions[J]. Journal of Vision, 2007, 7(14):1-17.
[22] CHENG Mingming, MITRA Niloy J, HUANG Xiaolei, et al.Global contrast based salient region detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 37(3):409-416.
[23] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C] //International Conference on Computer Vision. Piscataway, USA: IEEE Computer Society, 2011:2564-2571.
[24] BORJI Ali, SIHITE Dicky N, ITTI Laurent. Salient Object Detection:A Benchmark[C] //European Conference on Computer Vision. Berlin:Springer-Verlag, 2012:414-429.
[25] FAWCETT Tom. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8):861-874.
[26] DAVIS Jesse, GOADRICH Mark. The relationship between precision-recall and ROC curves[C] //International Conference on Machine Learning.New York, USA: ACM, 2010:233-240.
[27] MURRAY Naila, VANRELL Maria, OTAZU Xavier, et al. Saliency estimation using a non-parametric low-level vision model[C] //IEEE Conference on Computer Vision & Pattern Recognition. Piscataway, NJ:IEEE, 2011:433-440.
[28] XIE Yulin, LU Huchuan, YANG Minghsuan. Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2013, 22(5):1689-1698.
[1] 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20-26.
[2] 李璐,范文涛,杜吉祥. 基于Markov随机场的Student's t混合模型的脑MR图像分割[J]. 山东大学学报(工学版), 2017, 47(3): 49-55.
[3] 樊淑炎, 丁世飞. 基于多尺度的改进Graph cut算法[J]. 山东大学学报(工学版), 2016, 46(1): 28-33.
[4] 李春雷, 张兆翔, 刘洲峰, 廖亮, 赵全军. 基于纹理差异视觉显著性的织物疵点检测算法[J]. 山东大学学报(工学版), 2014, 44(4): 1-8.
[5] 于海晶1,2, 李桂菊1*. 基于差分盒维数的彩色烟雾图像识别[J]. 山东大学学报(工学版), 2014, 44(1): 35-40.
[6] 戚世乐,王美清. 自适应分割弱边缘的活动轮廓模型[J]. 山东大学学报(工学版), 2013, 43(6): 17-20.
[7] 管燕,李存华*,仲兆满,孙兰兰. 化学分子结构图分割算法[J]. 山东大学学报(工学版), 2012, 42(5): 65-70.
[8] 张新明, 毛文涛, 李振云. 二阶广义概率的二维Otsu阈值分割[J]. 山东大学学报(工学版), 2012, 42(1): 25-33.
[9] 王丽娅, 潘振宽, 魏伟波*, 刘存良, 张志梅, 王钰. 多相图像分割的交替凸松弛优化及其Split Bregman算法[J]. 山东大学学报(工学版), 2011, 41(2): 40-45.
[10] 王新沛1,刘常春1*,白曈2. 基于均值距离的图像分割方法[J]. 山东大学学报(工学版), 2010, 40(4): 36-41.
[11] 冯显英 张成梁 杨丙生 李蕾. 基于RGB颜色空间的异性纤维识别检测算法[J]. 山东大学学报(工学版), 2009, 39(5): 68-72.
[12] 周广通,尹义龙,郭文鹃,任春晓. 基于协同训练的指纹图像分割算法[J]. 山东大学学报(工学版), 2009, 39(1): 22-26.
[13] 马志强,常发亮,田伟,赵瑶 . 彩色图像中的人脸检测方法[J]. 山东大学学报(工学版), 2007, 37(4): 19-22 .
[14] 牛新生,叶华,王亮 . 彩色图像中的人脸检测方法[J]. 山东大学学报(工学版), 2007, 37(4): 0-0 .
[15] 杨立才,赵莉娜,吴晓晴 . 基于蚁群算法的模糊C均值聚类医学图像分割[J]. 山东大学学报(工学版), 2007, 37(3): 51-54 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!