山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 21-26.doi: 10.6040/j.issn.1672-3961.1.2016.148
刘岩1,2,3,李幼军4,陈萌1,2,3
LIU Yan1,2,3, LI Youjun4, CHEN Meng1,2,3
摘要: 以静息态脑电信号为基础,通过固有模态分解(empirical mode decomposition, EMD)算法对脑电信号进行信号去噪和特征值提取,通过支持向量机(support vector machine, SVM)算法对抑郁症患者和正常对照组人群的脑电特征值进行分类分析。 通过系统化的数据采集试验,采集了20位抑郁症患者和25位健康对照组的静息态脑电信号;对静息态脑电信号进行信号的去噪和特征提取;采用SVM算法对抑郁症患者和正常人对照组脑电特征值进行二值分类,分类正确率达到93.3%。 相较于传统的小波变换提取的特征值,分类准确率有明显的提高。
中图分类号:
[1] 朱艺.抑郁症研究进展[J].实用中医药杂志,2008,24(2):131-132. ZHU Yi. Research progress on depression[J]. Journal of Practical Traditional Chinese Medicine, 2008, 24(2):131-132. [2] 李跃华,张兰凤.抑郁症研究现状及未来研究目标探讨[J].中国中医药信息杂志,2006,13(10):1-3. LI Yuehua, ZHANG Lanfeng. Research status and future research goals of depression[J]. Chinese Journal of Information on Traditional Chinese Medicine, 2006, 13(10):1-3. [3] GUI Guangzhao, CAO xianghong, WANG Yanfeng, et al. Digital signal processing in bioinformatics[J]. Science Technology and Engineering, 2005, 5(20):1494-1502. [4] HUANG Norden E, SHEN Zheng, LONG Steven R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical Physical and Engineering Sciences, 1998, 454(1971):903-995. [5] 穆峰,常发亮,蒋沁宇.基于改进EMD算法的信号滤波[J].山东大学学报(工学版), 2015, 45(3):35-42. MU Feng, CHANG Faliang, JIANG Qinyu. Signal filtering based on Improved Empirical Mode Decomposition[J]. Journal of Shandong University(Engineering Science), 2015, 45(3):35-42. [6] LI Y, TSE P W, YANG X, et al. EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine[J]. Mechanical Systems and Signal Processing, 2010, 24(1):193-210. [7] SHEN Z, CHEN X,ZHANG X, et al. A novel intelligent gear fault diagnosis model based on EMD and multi-class TSVM[J]. Measurement, 2012, 45(1):30-40. [8] 卢丹,周以齐.基于EEMD和CWT的挖掘机座椅振动分析[J].山东大学学报(工学版), 2015, 45(3):58-64. LU Dan, ZHOU Yiqi. Vibration analysis of excavator seat based on EEMD and CWT[J]. Journal of Shandong University(Engineering Science), 2015, 45(3):58-64. [9] LI Shufang, ZHOU Weidong, YUAN Qi, et al. Feature extraction and recognition of ictal EEG using EMD and SVM[J]. Computer in Biology and Medicine, 2013, 43(7):807-816. [10] 翟俊海,翟梦尧,张素芳,等.基于小波子空间集成的人脸识别[J].山东大学学报(工学版), 2012, 42(2):1-6. ZHAI Junhai, ZHAI Mengyao, ZHANG Sufang, et al. Face recognition based on ensemble of wavelet subspaces[J]. Journal of Shandong University(Engineering Science), 2012, 42(2):1-6. [11] 张宏兵, 陆建峰, 汤九斌.一种基于近似EMD的DBSCAN改进算法[J].山东大学学报(工学版), 2012, 42(4):35-40. ZHANG Hongbing, LU Jianfeng, TANG Jiubin. An improved DBSCAN algorithm based on the approximate EMD[J]. Journal of Shandong University(Engineering Science), 2012, 42(4):35-40. [12] HARRINGTON P. Machine learning in action[M]. Beijing: Posts & Telecom Press, 2013:73-86. [13] 尧德中. 脑功能探测的电学理论与方法[M]. 北京:科学出版社,2003:10-236. YAO Dezhong. Electrical theory and method of detection of brain function[M]. Beijing: Science Press, 2003:10-236. [14] LIKHACHEV M. Search-based Planning for Large Dynamic Environments[D]. ProQuest Dissertations Publishing: Carnegie Mellon University, 2005. [15] SCHNEIDER M, MUSTARO P N, LIMA CA M. Automatic recognition of epileptic seizure in EEG via support vector machine and dimension fractal[C] //Proceedings of the 2009 International Joint Conference on Neural Networks. Atlanta, USA:IJCNN, 2009:3321-3325. [16] 李发权,杨立才,颜红博.基于PCA-SVM多生理信息融合的情绪识别方法[J].山东大学学报(工学版), 2014, 44(6):70-76. LI Faquan, YANG Licai, YAN Hongbo. An emotion recognition method of multiphysiological information fusion based on PCA-SVM[J]. Journal of Shandong University(Engineering Science), 2014, 44(6):70-76. [17] PLATT J C. Fast training of support vector machines using sequential minimal optimization[C] //Advances in Kernel Methods-Support Vector Learning. Cambridge, MA: MIT Press, 1999:185-208. [18] GUMUS E, KILIC N, SERTBAS A, et al. Evaluation of face recognition techniques using PCA, wavelets and SVM[J]. Expert Systems with Applications, 2010, 37(9):6404-6408. [19] WANG Deng, MIAO Duoqian, XIE Chen. Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection[J]. Expert Systems with Applications, 2011, 38(11):14314-14320. [20] NANDAN M, TALATHI S S, MYERS S, et al. Support vector machines for seizure detection in an animal model of chronic epilepsy[J]. Journal of Neural Engineering, 2010, 7(3):361-372. |
[1] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
[2] | 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12. |
[3] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
[4] | 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83. |
[5] | 刘晓勇. 一种基于树核函数的半监督关系抽取方法研究[J]. 山东大学学报(工学版), 2015, 45(2): 22-26. |
[6] | 浩庆波, 牟少敏, 尹传环, 昌腾腾, 崔文斌. 一种基于聚类的快速局部支持向量机算法[J]. 山东大学学报(工学版), 2015, 45(1): 13-18. |
[7] | 李发权, 杨立才, 颜红博. 基于PCA-SVM多生理信息融合的情绪识别方法[J]. 山东大学学报(工学版), 2014, 44(6): 70-76. |
[8] | 周咏梅1,杨佳能2,阳爱民2. 面向文本情感分析的中文情感词典构建方法[J]. 山东大学学报(工学版), 2013, 43(6): 27-33. |
[9] | 王昊,华继学,范晓诗. 基于双联支持向量机的入侵检测技术[J]. 山东大学学报(工学版), 2013, 43(6): 53-56. |
[10] | 施珺,朱敏. 一种基于灰色系统和支持向量机的预测优化模型[J]. 山东大学学报(工学版), 2012, 42(5): 7-11. |
[11] | 赵加敏,冯爱民*,刘学军. 局部密度嵌入的结构单类支持向量机[J]. 山东大学学报(工学版), 2012, 42(4): 13-18. |
[12] | 潘冬寅,朱发,徐昇,业宁*. 结肠癌基因表达谱的特征选取研究[J]. 山东大学学报(工学版), 2012, 42(2): 23-29. |
[13] | 孙鹏,程世庆*,谢敬思,张海瑞. 预测混合生物质灰熔点的CV-GA-SVM模型[J]. 山东大学学报(工学版), 2012, 42(2): 108-111. |
[14] | 赵燕燕, 范丽亚. 多输出支持向量回归机在依赖时间的变分不等式中的应用[J]. 山东大学学报(工学版), 2011, 41(3): 23-30. |
[15] | 周长辉1, 胡永健2,余绍鹏1. 鲁棒的源扫描仪辨识算法设计[J]. 山东大学学报(工学版), 2011, 41(2): 62-65. |
|