您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 69-75.doi: 10.6040/j.issn.1672-3961.0.2016.369

• • 上一篇    下一篇

基于虚拟模型和加速度规划的腿部缓冲策略

刘斌,宋锐*,柴汇   

  1. 山东大学控制科学与工程学院, 山东 济南 250061
  • 收稿日期:2016-09-26 出版日期:2016-12-20 发布日期:2016-09-26
  • 通讯作者: 宋锐(1975— ),山东泰安人,男,副教授,博士,主要研究方向为移动机器人.E-mail:rsong@sdu.edu.cn E-mail:liubin-wh@hotmail.com
  • 作者简介:刘斌(1986— ),山东济南人,男,博士研究生,主要研究方向为腿足式机器人的运动控制.E-mail: liubin-wh@hotmail.com
  • 基金资助:
    国家自然科学基金资助项目(61233014,61305130);山东省自然科学基金资助项目(ZR2013FQ003,ZR2013EEM027);中国博士后科学基金资助项目(2013M541912)

Buffering strategy for articulated legged robot based on virtual model control and acceleration planning

LIU Bin, SONG Rui*, CHAI Hui   

  1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2016-09-26 Online:2016-12-20 Published:2016-09-26

摘要: 提出一种基于虚拟模型控制和加速度规划的腿部缓冲方法。通过建立机器人腿部的虚拟模型,设定落地过程中躯干加速度从而可减小地面对机器人的冲击力,保护机器人的机械结构。该方法将机器人的落地过程分为下落、缓冲、恢复3个阶段。在下落阶段,通过在足端与期望位置之间添加虚拟“弹簧—阻尼”系统来控制足端位置。在缓冲阶段和恢复阶段,通过规划躯干质心加速度,从而减小落地过程中躯干受到的冲击。该方法可避免在激烈的足地交互过程中调节系统的刚度和阻尼,控制过程更简单精确。基于Webots的仿真试验表明,该方法在机器人落地过程中的保护是有效的。

关键词: 腿足式机器人, 加速度规划, 缓冲策略, 虚拟模型控制, 力控制

Abstract: Based on virtual model control and acceleration planning, a buffering strategy was proposed to protect the articulated legged robot for landing. Through virtually modeling the robotic leg, the torso acceleration during landing was specified so as to reduce the impact force acting on the torso. According to this buffering strategy, the whole landing process could be divided into three phases, the falling, buffering and recovering phases. In the falling phase, the robotic foot was correctly positioned by a virtual “spring-damping” system to achieve the appropriate position according to the actual position. In the buffering and recovering phases, the acceleration of center of mass of the robotic torso was planned so that the impact acting on the torso was reduced. Adjusting stiffness and damping parameters were avoided at the moment of foot-to-ground contact in this buffering strategy, rending a simple but accurate landing control. The simulation based on Webots protocol revealed that this buffering strategy was effective in protecting the robot against damage during landing.

Key words: legged robots, acceleration planning, buffering strategy, virtual model control, force control

中图分类号: 

  • TP242.6
[1] LIN Abin, ZHOU Jianjun, ZHANG Yaping. Design of joint variable stiffness actuation system of service robot[J]. Journal of Mechanical & Electrical Engineering, 2013, 30(4):439-443.
[2] ZINN Michael, KHATIB Oussama, ROTH Bernard, et al. Playing it safe[human-friendly robots] [J]. IEEE Robotics & Automation Magazine, 2004, 11(2):12-21.
[3] BICCHI Antonio, TONIETTI Giovanni, BAVARO Mi-chele, et al. Variable stiffness actuators for fast and safe motion control[C] //Proceeding of International Symposium on Robotics Research. Berlin, Germany:Springer, 2005:527-536.
[4] ZINN M, ROTH Bernard, KHATIB Oussama, et al. A new actuation approach for human friendly robot design[J]. The International Journal of Robotics Research, 2004, 23(4):379-398.
[5] VANDERBORGHT Bram, ALBU-SCHÄFFER Alin, BICCHI Antonio, et al. Variable impedance actuators:a review[J]. Robotics and Autonomous Systems, 2013, 61(12):1601-1614.
[6] RAIBERT Marc H, CHEPPONIS Michael, BROWN Benjamin. Running on four legs as though they were one[J]. IEEE Journal of Robotics and Automation, 1986, 2(2):70-82.
[7] HODGINS Jessica K, RAIBERT Marc H. Biped gymnastics[J]. The International Journal of Robotics Research, 1990, 9(2):115-128.
[8] MORITA Yuichi, OHNISHI Kouhei. Attitude control of hopping robot using angular momentum[C] //Proceedings of IEEE International Conference on Industrial Technology. Maribor, Slovenia:The IEEE Press, 2003:173-178.
[9] SASAHARA Kenta, MOTOI Naoki, SHIMONO Tomoyuki, et al. Stable landing method for biped robot by using switching control[C] //Proceeding of IEEE International Workshop on Advanced Motion Control(AMC). Sarajevo, Bosnia and Herzegovina:The IEEE Press, 2012:1-6.
[10] CHEN Diansheng, ZHANG Ziqiang, CHEN Kewen. Legs attitudes determination for bionic locust robot based on landing buffering performance[J]. Mechanism and Machine Theory, 2016, 99(1):117-139.
[11] HASHIMOTO Kenji, HAYASHI Akihiro, SAWATO Terumasa, et al. Terrain-adaptive control to reduce landing impact force for human-carrying biped robot[C] //Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore, Singapore: The IEEE Press, 2009:174-179.
[12] KIM Yongduk, LEE Bumjoo, YU Jeehwan R, et al. Landing force control for humanoid robotby time-domain passivity approach[J]. IEEE Transactions on Robotics, 2007, 20(6):1294-1301.
[13] CHOI Wooseok, DALLALI Houman, MEDRANO-CERDA Gustavo, et al. How leg/foot compliance and posture affects impact forces during landing[C] //Proceedings of IEEE International Conference on Robotics and Biomimetics(ROBIO). Bali, Indonesia:The IEEE Press, 2014:961-967.
[14] SUNG Sanghak, YOUM Youngil. Landing motion control of articulated legged robot[C] //Proceedings of IEEE International Conference on Robotics and Automation. Roma, Italy:The IEEE Press, 2007:3230-3236.
[15] HUTTER Marco, GEHRING Christian, BLOESCH Michael, et al. StarlETH:A compliant quadrupedal robot for fast, efficient, and versatile locomotion[C] //Proceeding of 15th International Conference on Climbing and Walking Robot-CLAWAR 2012. Baltimore, USA: EPFL, 2012:1-8.
[16] PRATT G A, WILLIAMSON M M. Series elastic actuators[C] //Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems. Pittsburgh, USA: IEEE, 1995:399-406.
[17] LIU B, CHAI H, RONG X W. A buffering method for quadruped robots based on active impedance control[J]. High Technology Letters, 2016, 4(1):1-8.
[18] PRATT J, DILWORTH P, PRATT G. Virtual model control of a bipedal walking robot[C] //Proceedings of IEEE International Conference on Robotics and Automation. Albuquerque, USA: The IEEE Press, 1997:193-198.
[19] 张国腾,荣学文,李贻斌,等.基于虚拟模型的四足机器人对角小跑步态控制方法[J].机器人,2016,35(1):64-74. ZHANG Guoteng, RONG Xuewen, LI Yibin, et al. Control of the quadrupedal trotting based on virtual model[J]. Robot, 2016, 35(1):64-74.
[20] ZHANG Guoteng, RONG Xuewen, Chai H, et al. Torso motion control and toe trajectory generation of a trotting quadruped robot based on virtual model control[J].Advanced Robotics, 2016, 30(4):1-14.
[21] 东九. 了解你的膝盖吗?[J]. 驾驶园, 2014, 5(1):52. DONG Jiu. How much do you know about your knees?[J]. World of Driver, 2014, 5(1):52.
[1] 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[3] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[4] 李辉平, 赵国群, 张雷, 贺连芳. 超高强度钢板热冲压及模内淬火工艺的发展现状[J]. 山东大学学报(工学版), 2010, 40(3): 69 -74 .
[5] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[6] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[7] 王学平,王登杰,孙英明,董磊 . 免棱镜全站仪在桥梁检测中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 105 -108 .
[8] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28 -34 .
[9] 张光庆,孔凡玉,李大兴, . Koblitz曲线上抵抗简单功耗分析的有效算法[J]. 山东大学学报(工学版), 2007, 37(3): 78 -80 .
[10] 许延生,刘兴芳 . 模糊聚类迭代模型在水资源承载能力评价中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 100 -104 .