山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 76-82.doi: 10.6040/j.issn.1672-3961.0.2016.016
李晓飞1,2,王雷1*,贾磊1,蔡文剑2
LI Xiaofei1,2, WANG Lei1*, JIA Lei1, CAI Wenjian2
摘要: 在利用固体吸附剂进行CO2捕集系统中,为了降低反应器的压降和提高吸附剂利用率,提出两种新型的斜向紧凑微流化床(oblique compact micro fluidized beds, OCMFB)和纵向紧凑微流化床(vertical compact micro fluidized beds, VCMFB或CMFB)反应器。通过装载固体吸附剂,通过捕集体积分数为0.5%的CO2对两种反应器的性能进行研究,并与传统径向流固定床(radial flow fixed bed, RFFB)反应器进行对比。试验结果表明:由于吸附剂在OCMFB和CMFB中处于流化态,在RFFB中处于静态,从而得到OCMFB反应器压降为CMFB反应器的82%,与RFFB反应器相比压降降幅为14%~323%;CMFB反应器的CO2吸附穿透时间为OCMFB反应器的109%,与RFFB反应器相比增幅为44%。经过10次CO2捕集循环,与RFFB反应器相比,OCMFB和CMFB反应器的吸附剂磨损相当,但CO2吸附性能更稳定。
中图分类号:
[1] GOEPPERT A, CZAUN M, PRAKASH G K S, et al. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere [J]. Energy & Environmental Science, 2012, 5(7):7833-7853. [2] KIM M K, BALDINI L, LEIBUNDGUT H, et al. A novel ventilation strategy with CO2 capture device and energy saving in buildings [J]. Energy and Buildings, 2015, 87(1):134-141. [3] FAN Y, KAMEISHI K, ONISHI S, et al. Field-based study on the energy-saving effects of CO2 demand controlled ventilation in an office with application of energy recovery ventilators[J]. Energy and Buildings, 2014, 68(1):412-422. [4] SJOSTROM S, KRUTKA H. Evaluation of solid sorbents as a retrofit technology for CO2 capture [J]. Fuel, 2010, 89(6):1298-1306. [5] 刘长天, 李庆亮, 李英杰, 等. 木醋废液调质石灰石循环捕集CO2 反应特性 [J]. 山东大学学报(工学版), 2013, 43(3):82-86. LIU Changtian, LI Qingliang, LI Yingjie, et al. Cyclic carbonation characteristics of limestone modified by waste wood vinegar[J]. Journal of Shandong University(Engineering Science), 2013, 43(3):82-86. [6] SAMANTA A, ZHAO A, SHIMIZU G K H, et al. Post-combustion CO2 capture using solid sorbents: a review[J]. Industrial & Engineering Chemistry Research, 2012, 51(4):1438-1463. [7] ZHANG W, LIU H, SUN C, et al. Performance of polyethyleneiminesilica adsorbent for post-combustion CO2 capture in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014, 251(5):293-303. [8] WANG J, WANG M, LI W, et al. Application of polyethylenimine-impregnated solid adsorbents for direct capture of low-concentration CO2[J]. American Institute of Chemical Engineers Journal, 2015, 61(3):972-980. [9] 杨春振, 段钰锋, 孙荣峰, 等. 埋管流化床颗粒流动行为的数值模拟[J]. 化工学报, 2013, 64(8):2788-2793. YANG Chunzhen, DUAN Yufeng, SUN Rongfeng, et al. Numerical study of solids behavior in fluidized bed with multi-immersed tubes[J]. Journal of Chemical Industry and Engineering, 2013, 64(8):2788-2792. [10] RIDHA F N, MANOVIC V, MACCHI A, et al. CO2 capture at ambient temperature in a fixed bed with CaO-based sorbents [J]. Applied Energy, 2015, 140(140):297-303. [11] 任立波, 尚立宝, 闫日雄, 等. 脉冲鼓泡床内鼓泡和颗粒混合特性的CFD-DEM数值模拟[J]. 山东大学学报(工学版), 2015, 45(2): 62-66. REN Libo, SHANG Libao, YAN Rixiong, et al. CFD-DEM simulation of bubbling and particle mixing properties in pulsed jet fluidized bed[J]. Journal of Shandong University(Engineering Science), 2015, 45(2):62-66. [12] 贺婷婷, 钟文琪, 李蔚玲, 等. 三相流化床流动结构特征的小波分析[J]. 东南大学学报(自然科学版), 2014, 44(3): 573-578. HE Tingting, ZHONG Wenqi, LI Weiling, et al. Characteristics of flow patterns in three-phase fluidized bed by wavelet analysis[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(3):573-578. [13] MULGUNDMATH V P, JONES R A, TEZEL F H, et al. Fixed bed adsorption for the removal of carbon dioxide from nitrogen: break through behaviour and modelling for heat and mass transfer[J]. Separation and Purification Technology, 2012, 85(6):17-27. [14] YANG W C, HOFFMAN J. Exploratory design study on reactor configurations for carbon dioxide capture from conventional power plants employing regenerable solid sorbents[J]. Industrial & Engineering Chemistry Research, 2009, 48(1):341-351. [15] BLAMEY J, AL-JEBOORI M J, MANOVIC V, et al. CO2 capture by calcium aluminate pellets in a small fluidized bed[J]. Fuel Processing Technology, 2016, 142:100-106. [16] DANG N T Y, GALLUCCI F, VAN SINT ANNALAND M. An experimental investigation on the onset from bubbling to turbulent fluidization regime in micro-structured fluidized beds[J]. Powder Technology, 2014, 256(2):166-174. [17] HUANG W C, CHOU C T. Comparison of radial-and axial-flow rapid pressure swing adsorption processes[J]. Industrial & Engineering Chemistry Research, 2003, 42(9):1998-2006. [18] TARKA T J, CIFERNO J P, GRAY M L, et al. CO2 capture systems using amine enhanced solid sorbents[C] //Proceedings of Fifth Annual Conference on Carbon Capture and Sequestration. Alexandria, USA:[s.n.] , 2006:144-151. [19] TIAN Q, HE G, WANG Z, et al. A novel radial adsorber with parallel layered beds for prepurification of large-scale air separation units[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7502-7515. [20] YU J, ZENG X, ZHANG J, et al. Isothermal differential characteristics of gas-solid reaction in micro-fluidized bed reactor[J]. Fuel, 2013, 103(1):29-36. |
[1] | 刘长天1,李庆亮2,李英杰1*,孙荣岳1,路春美1. 木醋废液调质石灰石循环捕集CO2反应特性[J]. 山东大学学报(工学版), 2013, 43(3): 82-86. |
|