您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 76-82.doi: 10.6040/j.issn.1672-3961.0.2016.016

• • 上一篇    下一篇

斜向和纵向紧凑微流化床设计及其性能

李晓飞1,2,王雷1*,贾磊1,蔡文剑2   

  1. 1. 山东大学控制科学与工程学院, 山东 济南 250061;2. 南洋理工大学电气与电子工程学院, 新加坡 639798
  • 收稿日期:2016-01-11 出版日期:2016-12-20 发布日期:2016-01-11
  • 通讯作者: 王雷(1970— ),男,山东济南人,副教授,博士,主要研究方向为低品位能源利用与中央空调节能控制. E-mail: leiwang@sdu.edu.cn E-mail:lixiaofeide126@126.com
  • 作者简介:李晓飞(1987— ),男,河北康保人,博士研究生,主要研究方向为低品位能源利用与中央空调节能控制. E-mail: lixiaofeide126@126.com
  • 基金资助:
    山东大学交叉学科培育计划资助项目(2014JC022)

Design and performance of oblique and vertical compact micro fluidized beds

LI Xiaofei1,2, WANG Lei1*, JIA Lei1, CAI Wenjian2   

  1. 1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
  • Received:2016-01-11 Online:2016-12-20 Published:2016-01-11

摘要: 在利用固体吸附剂进行CO2捕集系统中,为了降低反应器的压降和提高吸附剂利用率,提出两种新型的斜向紧凑微流化床(oblique compact micro fluidized beds, OCMFB)和纵向紧凑微流化床(vertical compact micro fluidized beds, VCMFB或CMFB)反应器。通过装载固体吸附剂,通过捕集体积分数为0.5%的CO2对两种反应器的性能进行研究,并与传统径向流固定床(radial flow fixed bed, RFFB)反应器进行对比。试验结果表明:由于吸附剂在OCMFB和CMFB中处于流化态,在RFFB中处于静态,从而得到OCMFB反应器压降为CMFB反应器的82%,与RFFB反应器相比压降降幅为14%~323%;CMFB反应器的CO2吸附穿透时间为OCMFB反应器的109%,与RFFB反应器相比增幅为44%。经过10次CO2捕集循环,与RFFB反应器相比,OCMFB和CMFB反应器的吸附剂磨损相当,但CO2吸附性能更稳定。

关键词: 流化床, CO2捕集, 固体吸附剂, 径向流固定床

Abstract: In order to reduce pressure drop and improve adsorbent utilization in the CO2 capture system using solid adsorbents, a novel oblique and vertical compact micro fluidized beds(OCMFB and CMFB)reactors were proposed. The performance of the OCMFB and CMFB reactors for CO2 capture when the volume fraction of CO2 is 0.5% using solid adsorbents were experimentally studied and compared to that of the radial flow fixed bed(RFFB)reactor. The results showed that the pressure drop in the OCMFB reactor was 82% of that in the CMFB reactor, reduced by 14%~323% compared to the RFFB reactor; the breakthrough time for CO2 adsorption in the CMFB reactor was 109% of that in the OCMFB reactor, increased by 44% compared to the RFFB reactor due to the fluidization of the adsorbents in the OCMFB and CMFB reactors other than the statics in the RFFB reactor. The attrition of the adsorbents in both OCMFB and CMFB reactors were equal to that in the RFFB reactor, but the adsorption capacity for CO2 in both OCMFB and CMFB reactors were more stable than that in the RFFB reactor after 10 cycles of CO2 capture.

Key words: radial flow fixed bed, solid adsorbents, fluidized bed, CO2 capture

中图分类号: 

  • TH69
[1] GOEPPERT A, CZAUN M, PRAKASH G K S, et al. Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere [J]. Energy & Environmental Science, 2012, 5(7):7833-7853.
[2] KIM M K, BALDINI L, LEIBUNDGUT H, et al. A novel ventilation strategy with CO2 capture device and energy saving in buildings [J]. Energy and Buildings, 2015, 87(1):134-141.
[3] FAN Y, KAMEISHI K, ONISHI S, et al. Field-based study on the energy-saving effects of CO2 demand controlled ventilation in an office with application of energy recovery ventilators[J]. Energy and Buildings, 2014, 68(1):412-422.
[4] SJOSTROM S, KRUTKA H. Evaluation of solid sorbents as a retrofit technology for CO2 capture [J]. Fuel, 2010, 89(6):1298-1306.
[5] 刘长天, 李庆亮, 李英杰, 等. 木醋废液调质石灰石循环捕集CO2 反应特性 [J]. 山东大学学报(工学版), 2013, 43(3):82-86. LIU Changtian, LI Qingliang, LI Yingjie, et al. Cyclic carbonation characteristics of limestone modified by waste wood vinegar[J]. Journal of Shandong University(Engineering Science), 2013, 43(3):82-86.
[6] SAMANTA A, ZHAO A, SHIMIZU G K H, et al. Post-combustion CO2 capture using solid sorbents: a review[J]. Industrial & Engineering Chemistry Research, 2012, 51(4):1438-1463.
[7] ZHANG W, LIU H, SUN C, et al. Performance of polyethyleneiminesilica adsorbent for post-combustion CO2 capture in a bubbling fluidized bed[J]. Chemical Engineering Journal, 2014, 251(5):293-303.
[8] WANG J, WANG M, LI W, et al. Application of polyethylenimine-impregnated solid adsorbents for direct capture of low-concentration CO2[J]. American Institute of Chemical Engineers Journal, 2015, 61(3):972-980.
[9] 杨春振, 段钰锋, 孙荣峰, 等. 埋管流化床颗粒流动行为的数值模拟[J]. 化工学报, 2013, 64(8):2788-2793. YANG Chunzhen, DUAN Yufeng, SUN Rongfeng, et al. Numerical study of solids behavior in fluidized bed with multi-immersed tubes[J]. Journal of Chemical Industry and Engineering, 2013, 64(8):2788-2792.
[10] RIDHA F N, MANOVIC V, MACCHI A, et al. CO2 capture at ambient temperature in a fixed bed with CaO-based sorbents [J]. Applied Energy, 2015, 140(140):297-303.
[11] 任立波, 尚立宝, 闫日雄, 等. 脉冲鼓泡床内鼓泡和颗粒混合特性的CFD-DEM数值模拟[J]. 山东大学学报(工学版), 2015, 45(2): 62-66. REN Libo, SHANG Libao, YAN Rixiong, et al. CFD-DEM simulation of bubbling and particle mixing properties in pulsed jet fluidized bed[J]. Journal of Shandong University(Engineering Science), 2015, 45(2):62-66.
[12] 贺婷婷, 钟文琪, 李蔚玲, 等. 三相流化床流动结构特征的小波分析[J]. 东南大学学报(自然科学版), 2014, 44(3): 573-578. HE Tingting, ZHONG Wenqi, LI Weiling, et al. Characteristics of flow patterns in three-phase fluidized bed by wavelet analysis[J]. Journal of Southeast University(Natural Science Edition), 2014, 44(3):573-578.
[13] MULGUNDMATH V P, JONES R A, TEZEL F H, et al. Fixed bed adsorption for the removal of carbon dioxide from nitrogen: break through behaviour and modelling for heat and mass transfer[J]. Separation and Purification Technology, 2012, 85(6):17-27.
[14] YANG W C, HOFFMAN J. Exploratory design study on reactor configurations for carbon dioxide capture from conventional power plants employing regenerable solid sorbents[J]. Industrial & Engineering Chemistry Research, 2009, 48(1):341-351.
[15] BLAMEY J, AL-JEBOORI M J, MANOVIC V, et al. CO2 capture by calcium aluminate pellets in a small fluidized bed[J]. Fuel Processing Technology, 2016, 142:100-106.
[16] DANG N T Y, GALLUCCI F, VAN SINT ANNALAND M. An experimental investigation on the onset from bubbling to turbulent fluidization regime in micro-structured fluidized beds[J]. Powder Technology, 2014, 256(2):166-174.
[17] HUANG W C, CHOU C T. Comparison of radial-and axial-flow rapid pressure swing adsorption processes[J]. Industrial & Engineering Chemistry Research, 2003, 42(9):1998-2006.
[18] TARKA T J, CIFERNO J P, GRAY M L, et al. CO2 capture systems using amine enhanced solid sorbents[C] //Proceedings of Fifth Annual Conference on Carbon Capture and Sequestration. Alexandria, USA:[s.n.] , 2006:144-151.
[19] TIAN Q, HE G, WANG Z, et al. A novel radial adsorber with parallel layered beds for prepurification of large-scale air separation units[J]. Industrial & Engineering Chemistry Research, 2015, 54(30): 7502-7515.
[20] YU J, ZENG X, ZHANG J, et al. Isothermal differential characteristics of gas-solid reaction in micro-fluidized bed reactor[J]. Fuel, 2013, 103(1):29-36.
[1] 刘长天1,李庆亮2,李英杰1*,孙荣岳1,路春美1. 木醋废液调质石灰石循环捕集CO2反应特性[J]. 山东大学学报(工学版), 2013, 43(3): 82-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[2] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[3] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[4] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[5] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[6] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[7] 卜德云 张道强. 自适应谱聚类算法研究[J]. 山东大学学报(工学版), 2009, 39(5): 22 -26 .
[8] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[9] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[10] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .