山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 64-71.doi: 10.6040/j.issn.1672-3961.0.2016.011
刘向杰1,韩耀振1,2*
LIU Xiangjie1, HAN Yaozhen1,2*
摘要: 为了提高多机电力系统暂态稳定性,提出一种连续高阶滑模励磁控制策略。各发电机功角偏差为滑模变量,把具有非线性和不确定性多机电力系统的高阶滑模控制转化为不确定积分链系统的有限时间稳定问题,控制器结合几何齐次连续控制律和二阶滑模超螺旋算法,实现系统状态有限时间收敛,克服系统未建模动态、测量误差和外部扰动等不确定性,利用精确鲁棒微分器观测功角微分,理论分析证明了闭环系统的有限时间稳定。所设计高阶滑模励磁控制器能够保持机端电压稳定,并能有效提高电力系统的暂态稳定性。针对3机系统的仿真结果验证了该控制方法的有效性。
中图分类号:
[1] ZHAO P, YAO W, WEN J, et al.Improved synergetic excitation control for transient stability enhancement and voltage regulation of power systems[J].International Journal of Electrical Power & Energy Systems, 2015, 68:44-51. [2] 阮阳, 袁荣湘.采用输出反馈方式的电力系统非线性励磁控制[J]. 中国电机工程学报, 2011, 31(34):68-76. RUAN Yang, YUAN Rongxiang. Output feedback based nonlinear excitation control for power systems[J]. Proceedings of the CSEE, 2011, 31(34):68-76. [3] KUNDUR P. Power system stability and control[M].NewYork: McGraw-Hill, 1994:813-814. [4] GURRALA G, SEN I.Power system stabilizers design for interconnected power systems[J].IEEE Transactions on Power Systems, 2010, 25(2):1042-1051. [5] HOSSAIN M J, POTA H R, UGRINOVSKII V A, et al. Voltage mode stabilisation in power systems with dynamic loads[J]. International Journal of Electrical Power & Energy Systems, 2010, 32(9):911-920. [6] 阮阳, 袁荣湘, 万黎, 等. 同步发电机的非线性鲁棒电压控制[J]. 电工技术学报, 2012, 27(9):9-16. RUAN Yang, YUAN Rongxiang, WAN Li, et al. Nonlinear robust voltage control for synchronous generators[J]. Transactions of China Electrotechnical Society, 2012, 27(9):9-16. [7] 兰洲,甘德强,倪以信,等.电力系统非线性鲁棒自适应分散励磁控制设计[J].中国电机工程学报,2006,31(13):33-39. LAN Zhou, GAN Deqiang, NI Yixin, et al. Decentralized nonlinear robust adaptive excitation control design for power systems[J].Proceedings of the CSEE, 2006, 31(13):33-39. [8] 古丽扎提. 海拉提, 王杰. 广义 Hamilton 多机电力系统的广域时滞阻尼控制[J].中国电机工程学报,2014,34(34):6199-6208. GULIZHATI Hailati, WANG Jie. Wide-area time-delay damping control of generalized hamilton multi-machine power system[J]. Proceedings of the CSEE, 2014, 34(34):6199-6208. [9] GHASEMI A, SHAYEGHI H, ALKHATIB H. Robust design of multimachine power system stabilizers using fuzzy gravitational search algorithm[J]. International Journal of Electrical Power & Energy Systems, 2013, 51:190-200. [10] 赵洪山, 兰晓明, 周雪青. 基于平衡降阶模型的多机系统非线性励磁预测控制[J]. 中国电机工程学报, 2013, 36(22):61-67. ZHAO Hongshan, LAN Xiaoming, ZHOU Xueqing. Nonlinear excitation prediction control of multi-machine power systems based on balanced reduced model[J]. Proceedings of the CSEE, 2013, 36(22):61-67. [11] MAHMUD M A, HOSSAIN M J, POTA H R. Transient stability enhancement of multimachine power systems using nonlinear observer-based excitation controller[J]. International Journal of Electrical Power & Energy Systems, 2014, 58:57-63. [12] 吴忠强, 宋明厚, 付立元. 多机电力系统间接自适应模糊分散H∞控制研究[J]. 电力自动化设备, 2013, 33(1):23-27. WU Zhongqiang, SONG Minghou, FU Liyuan. Indirect adaptive fuzzy and distributed H∞control for multi-machine power system[J]. Electric Power Automation Equipment, 2013, 33(1):23-27. [13] 赵辉, 王亚菲, 王红君, 等. 基于滑模变结构控制的余热发电机机组励磁控制研究[J]. 电力系统保护与控制, 2015, 43(6):8-13. ZHAO Hui, WANG Yafei, WANG Hongjun, et al. Study of waste heat power generation units excitation control based on sliding mode variable structure control[J]. Power System Protection and Control, 2015, 43(6):8-13. [14] 邹德虎, 王宝华. 多机电力系统自适应鲁棒 Terminal 滑模励磁控制[J].电力自动化设备, 2011(12):79-82. ZOU Dehu, WANG Baohua. Adaptive and robust excitation control with Terminal sliding mode for multi-machine power system[J]. Electric Power Automation Equipment, 2011(12):79-82. [15] BANDAL V, BANDYOPADHYAY B. Robust decentralised output feedback sliding mode control technique-based power system stabiliser(PSS)for multimachine power system[J]. IET Control Theory & Applications, 2007, 1(5):1512-1522. [16] HUERTA H, LOUKIANOV A G, CA(~overN)EDO J M. Decentralized sliding mode block control of multimachine power systems[J]. International Journal of Electrical Power & Energy Systems, 2010, 32(1):1-11. [17] NECHADI E, HARMAS M N, HAMZAOUI A, et al. A new robust adaptive fuzzy sliding mode power system stabilizer[J]. International Journal of Electrical Power & Energy Systems, 2012, 42(1):1-7. [18] SAOUDI K, HARMAS M N. Enhanced design of an indirect adaptive fuzzy sliding mode power system stabilizer for multi-machine power systems[J]. International Journal of Electrical Power & Energy Systems, 2014, 54:425-431. [19] LEVANT A, MICHAEL A. Adjustment of high-order sliding-mode controllers[J]. International Journal of Robust and Nonlinear Control, 2009, 19(15):1657-1672. [20] 易伯瑜, 康龙云, 陶思念, 等. 永磁同步电机抗扰高阶滑模观测器设计[J]. 电工技术学报, 2014, 29(5):132-140. YI Boyu, KANG Longyun, TAO Sinian, et al. Design of robust high order sliding mode observer for permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2014, 29(5):132-140. [21] LIU X, HAN Y. Finite time control for MIMO nonlinear system based on higher-order sliding mode[J]. ISA transactions, 2014, 53(6):1838-1846. [22] BELTRAN B, EL HACHEMI BENBOUZID M, AHMED-ALI T. Second-order sliding mode control of a doubly fed induction generator driven wind turbine[J]. IEEE Transactions on Energy Conversion, 2012, 27(2):261-269. [23] LIU J, LAGHROUCHE S, WACK M. Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications[J]. International Journal of Control, 2014, 87(6):1117-1130. [24] EVANGELISTA C, VALENCIAGA F, PULESTON P. Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains[J]. IEEE Transactions on Energy Conversion, 2013, 28(3):682-689. [25] COLBIA-VEGA A, DE LEON-MORALES J, FRIDMAN L, et al. Robust excitation control design using sliding-mode technique for multimachine power systems[J]. Electric Power Systems Research, 2008, 78(9):1627-1634. [26] HUERTA H, LOUKIANOV A G, CANEDO J M. Robust multimachine power systems control via high order sliding modes[J]. Electric Power Systems Research, 2011, 81(7):1602-1609. [27] BENAHDOUGA S, BOUKHETALA D, BOUDJEMA F. Decentralized high order sliding mode control of multimachine power systems[J]. International Journal of Electrical Power & Energy Systems, 2012, 43(1):1081-1086. [28] DEFOORT M, FLOQUET T, KOKOSY A, et al. A novel higher order sliding mode control scheme[J]. Systems & Control Letters, 2009, 58(2):102-108. [29] BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J].Mathematics of Control, Signals and Systems, 2005, 17(2):101-127. [30] 赵占山, 张静, 孙连坤, 等. 有限时间收敛的滑模自适应控制器设计[J]. 山东大学学报(工学版), 2012, 42(4):74-78. ZHAO Zhanshan, ZHANG Jing, SUN Liankun, et al. Design of self-adaptive sliding mode controller with finite time convergence [J]. Journal of Shandong University(Engineering Science), 2012, 42(4):74-78. |
[1] | 张稳, 宋洪军, 李天华, 刘彦芬. 高效高精度定量配煤控制系统设计与实现[J]. 山东大学学报(工学版), 0, (): 63-69. |
[2] | 张井岗, 马文廷, 赵志诚. 串级时滞过程的二自由度Smith预估控制[J]. 山东大学学报(工学版), 0, (): 43-50. |
[3] | 赵志涛, 赵志诚, 王惠芳. 直流调速系统模糊自整定分数阶内模控制[J]. 山东大学学报(工学版), 0, (): 58-62. |
[4] | 刘友权,王晨光,侍红军. 主从Cucker-Smale系统的有限时间蜂拥行为[J]. 山东大学学报 (工学版), 2018, 48(5): 61-68. |
[5] | 崔恒斌,周瑾,董继勇,金超武. V-Gap度量磁悬浮推力轴承系统H∞控制器设计[J]. 山东大学学报(工学版), 2018, 48(2): 86-93. |
[6] | 代时雨,刘淑琴. 状态观测器对磁悬浮平台速度与加速度的估算[J]. 山东大学学报(工学版), 2018, 48(2): 114-120. |
[7] | 叶丹,张天予,李奎. 全局信息未知的多智能体自适应容错包容控制[J]. 山东大学学报(工学版), 2017, 47(5): 1-6. |
[8] | 张米露,王天真,汤天浩,辛斌. 一种模式关联主元分析的海流机故障检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 123-129. |
[9] | 杨雅伟,宋冰,侍洪波. 基于两步子空间划分的化工过程监测方法[J]. 山东大学学报(工学版), 2017, 47(5): 110-117. |
[10] | 黄成凯,杨浩,姜斌,程舒瑶. 一类复杂网络的协同容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 203-209. |
[11] | 邓俊武,张玉民,张红娣,杜晓坤. X尾翼无人机的故障诊断和容错控制方法[J]. 山东大学学报(工学版), 2017, 47(5): 166-172. |
[12] | 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237. |
[13] | 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270. |
[14] | 张玉婷,李望,王晨光,刘友权,侍红军. 不连续耦合的时滞复杂动态网络的同步[J]. 山东大学学报(工学版), 2017, 47(4): 43-49. |
[15] | 梁秋实,赵志诚. 基于分数阶滑模观测器的BLDCM无位置传感器控制[J]. 山东大学学报(工学版), 2017, 47(3): 96-101. |
|