山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 110-117.doi: 10.6040/j.issn.1672-3961.0.2017.176
杨雅伟,宋冰,侍洪波*
YANG Yawei, SONG Bing, SHI Hongbo*
摘要: 为了解决现代化工过程采集的数据维度高、分布复杂的问题,提出一种基于两步子空间(two step subspace division, TSSD)划分的化工过程监测方法。为了降低过程分析复杂度,将具有相似特性的变量划分为同一空间。考虑数据的复杂分布问题,将第一步得到的每个子空间划分为高斯空间与非高斯空间。利用主元分析(principal component analysis, PCA)和独立元分析(independent component analysis, ICA)方法建立检测模型并构造统计量。整合每个子空间的统计量并基于局部离群因子(local outlier factor, LOF)方法构建综合统计量。结果表明:TSSD方法对于16个故障均能取得最优的漏报率,尤其是故障10和故障16,漏报率分别为15.375%和6.75%,有效验证所提出的基于两步子空间划分的过程监测方法的优越性。
中图分类号:
[1] PORTNOY I, MELENDEZ K, PINZON H, et al. An improved weighted recursive PCA algorithm for adaptive fault detection[J]. Control Engineering Practice, 2016, 50: 69-83. [2] BEGHI A, BRIGNOLI L, CECCHINATO L, et al. Data-driven fault detection and diagnosis for HVAC water chillers[J]. Control Engineering Practice. 2016, 53: 79-91 [3] ZHAO Chunhui. Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring[J]. AIChE Journal, 2014, 60(2): 559-573. [4] FEITAL T, KRUGER U, DUTRA J, et al. Modeling and performance monitoring of multivariate multimodal processes[J]. AIChE Journal, 2013, 59(5): 1557-1569. [5] LEE J M, CHOI S W, LEE I B. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1): 223-234. [6] ALCALA C F, QIN S J. Reconstruction-based contribution for process monitoring with kernel principal component analysis[J]. Industrial and Engineering Chemistry Research, 2010, 49(17): 7849-7857. [7] SRINIVASAN R, WANG C, HO W K, et al. Dynamic principal component analysis based methodology for clustering process states in agile chemical plants[J]. Industrial and Engineering Chemistry Research, 2004, 43(18): 2123-2139. [8] RASHID M M, YU Jie. Hidden Markov model based adaptive independent component analysis approach for complex chemical process monitoring and fault detection[J]. Industrial and Engineering Chemistry Research, 2012, 51(15): 5506-5514. [9] GE Zhiqiang, SONG Zhihuan. Distributed PCA model for plant-wide process monitoring [J]. Industrial and Engineering Chemistry Research, 2013, 52(5): 1947-1957. [10] 吕小条,宋冰,谭帅,等. 基于全变量信息的子空间监控方法[J]. 化工学报,2015,66(4):1395-1401. LYU Xiaotiao, SONG Bing, TAN Shuai, et al. Subspace monitoring based on full variable information[J]. Journal of Chemical Industry and Engineering, 2015, 66(4):1395-1401. [11] MACGREGOR J F, JAECKLE C, KIPARISSIDES C, et al. Process monitoring and diagnosis by multiblock PLS methods[J]. AIChE Journal, 1994, 40(5): 826-838. [12] TONG Chudong, SONG Yu, YAN Xuefeng. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference[J]. Industrial and Engineering Chemistry Research, 2013, 52(29): 9897-9907. [13] SONG Bing, SHI Hongbo, MA Yuxin, et al. Multisubspace principal component analysis with local outlier factor for multimode process monitoring[J]. Industrial and Engineering Chemistry Research, 2014, 53(42): 16453-16464. [14] ZHANG Yingwei, MA Chi. Decentralized fault diagnosis using multiblock kernel independent component analysis[J]. Chemical Engineering Research and Design, 2012, 90(5): 667-676. [15] LYU Zhaomin, YAN Xuefeng, JIANG Qingchao. Batch process monitoring based on just-in-time learning and multiple-subspace principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 137(20):128-139. [16] GE Zhiqiang, SONG Zhihuan. Process monitoring based on independent component analysis-principal component analysis(ICA-PCA)and similarity factors[J]. Industrial and Engineering Chemist Research, 2007, 46(7): 2054-2063. [17] ZHAO Chunhui, GAO Furong, WANG Fuli. Nonlinear batch process monitoring using phase-based kernel-independent component analysis-principal component analysis(KICA-PCA)[J]. Industrial and Engineering Chemist Research, 2009, 48(20): 9163-9174. [18] HUANG Jian, YAN Xuefeng. Gaussian and non-gausian double subspace statistical process monitoring based on principal component analysis and independent component analysis[J]. Industrial and Engineering Chemist Research, 2015, 54(3): 1015-1027. [19] 杨雅伟,宋冰,侍洪波. 多SVDD模型的多模态过程监控方法[J]. 化工学报,2015, 66(11): 4526-4533. YANG Yawei, SONG Bing, SHI Hongbo. Multimode processes monitoring methodvia multiple SVDD Model[J]. Journal of Chemical Industry and Engineering, 2015, 66(11): 4526-4533. [20] MA Hehe, HU Yi, SHI Hongbo. Fault detection and identification based on the neighborhood standardized local outlier factor method [J]. Industrial and Engineering Chemistry Research, 2013, 52(6): 2389-2402. [21] RICKER N L. Decentralized control of the tennessee eastman challenge process[J]. Journal of Process Control, 1996, 6(4): 205-221. [22] DOWNS J J, VOGEL E F. A plant-wide industrial process control problem[J]. Computers and Chemical Engineering, 1993, 17(3): 245-255. [23] RICKER N L. Optimal steady-state operation of the Tennessee eastman challenge process[J]. Computers and Chemical Engineering, 1995, 19(9):949-959. |
[1] | 张米露,王天真,汤天浩,辛斌. 一种模式关联主元分析的海流机故障检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 123-129. |
[2] | 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194. |
[3] | 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222. |
[4] | 孙靖杰1,赵建军2*,姚跃亭3,姚刚1. 基于可变遗忘因子的改进RPCA方法及其在自适应故障监测中的应用[J]. 山东大学学报(工学版), 2012, 42(4): 60-66. |
|