您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (6): 89-99.doi: 10.6040/j.issn.1672-3961.0.2023.134

• 土木工程 • 上一篇    

基于图像数据和碎石集料级配与用量的碎石集料空隙率快速检测方法

鲁志恒1,霍延强2*,韩汶1,杜聪2,刘轶鹏2,张宏博2   

  1. 1.山东省交通科学研究院, 山东 济南 250102;2.山东大学齐鲁交通学院, 山东 济南 250002
  • 发布日期:2024-12-26
  • 作者简介:鲁志恒(1993— ),男,山东济南人,硕士,主要研究方向为交通工程. E-mail:2529874278@qq.com. *通信作者简介:霍延强(2000— ),男,山东菏泽人,硕士研究生,主要研究方向为交通岩土工程、智慧交通车路协同及高速公路差异化收费. E-mail:202215421@mail.sdu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2022YFB2602102)

Rapid detection of crushed stone aggregate void fraction based on image data and crushed stone aggregate grading and amounts

LU Zhiheng1, HUO Yanqiang2*, HAN Wen1, DU Cong2, LIU Yipeng2, ZHANG Hongbo2   

  1. 1. Shandong Institute of Transportation Science, Jinan 250102, Shandong, China;
    2. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
  • Published:2024-12-26

摘要: 为解决传统碎石集料检测方法中存在的破坏性检测、代表性不足、人工操作误差、费时费力及检测不连续等问题,提出一种连续、无损、快速且准确的碎石集料空隙率检测新方法。使用摄像设备采集振实后的碎石集料表面图像,并利用图像处理技术提取碎石集料的表面图像数据;分析提取到的图像信息,建立体现碎石集料表面特征的图像指标体系;使用提取到的图像指标、集料用量和级配信息作为输入数据,采用随机森林方法对碎石集料的空隙率进行预测;设计室内压实模拟试验方案,收集65组不同用量和级配的碎石集料空隙率测定结果,构建用于机器学习模型训练的数据集。结果显示,所提议方法在测试集上的平均绝对百分比误差为1.69%、平均绝对值误差为0.589、均方根误差为0.914、相关指数为0.974、预测精度达到98.31%,可实现连续、无损、快速、准确的碎石集料空隙率实时检测。

关键词: 图像处理, 随机森林, 碎石集料空隙率, 施工质量控制, 无损检测

中图分类号: 

  • TU521
[1] 陈云, 胡志刚, 徐晗. 灌水法检测堆石体密度影响因素分析与控制措施[J]. 岩土工程学报, 2017, 39(1): 177-181. CHEN Yun, HU Zhigang, XU Han. Influence factors and control measures for the density of rockfill by using irrigation method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 177-181.
[2] 马林, 陈佩林, 徐科, 等. 粗集料颗粒几何形状对 VCA_(DRC)的影响研究[J]. 公路交通科技, 2007, 24(12): 5-9. MA Lin, CHEN Peilin,XU Ke, et al. Effect of coarse aggregate shape on VCA_(DRC)[J]. Journal of Highway and Transportation Research and Development, 2007, 24(12): 5-9.
[3] 张小伟, 肖瑞敏, 张雄. 混凝土粗骨料堆积的定量体视学研究[J]. 混凝土, 2011(4): 64-68. ZHANG Xiaowei, XIAO Ruimin, ZHANG Xiong. lmage analysis for package of coarse aggregates used in concrete[J]. Concrete, 2011(4): 64-68.
[4] KOOHMISHI M, PALASSI M. Evaluation of morphological properties of railway ballast particles by image processing method[J]. Transportation Geotechnics, 2017, 12: 15-25.
[5] ZHAO L, ZHANG S, HUANG D, et al. 3D shape quantification and random packing simulation of rock aggregates using photogrammetry-based reconstruction and discrete element method[J]. Construction and Building Materials, 2020, 262: 119986.
[6] HU J, LIU P, WANG D, et al. Influence of aggregates' spatial characteristics on air-voids in asphalt mixture[J]. Road Materials and Pavement Design, 2018, 19(4): 837-855.
[7] KIM K, KANG M. Linking the effect of aggregate interaction to the compaction theory for asphalt mixtures using image processing[J]. Applied Sciences, 2018, 8(11): 2045-2062.
[8] 李守艳, 刘洪亮, 史鉴. 无养生条件石灰粉煤灰稳定碎石施工技术研究[J].市政技术, 2022, 40(7): 96-100. LI Shouyan, LIU Hongliang, SHI Jian. Research on lime fly ash stabilized crushed-stones without[J]. Municipal Technology, 2022, 40(7): 96-100.
[9] 谢远新. 基于均匀试验的振动成型方式下粗集料间隙率研究[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(4): 615-618. XIE Yuanxin. Study on the voids in coarse aggregate by means of vibration molding based on the uniform experiment[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2016, 40(4): 615-618.
[10] 吴文亮, 王端宜, 张肖宁, 等. 基于数字图像处理与概率统计方法的 VCA_(mix)研究[J]. 同济大学学报(自然科学版), 2010, 38(12): 1792-1795. WU Wenliang, WANG Duanyi, ZHANG Xiaoning, et al. Research on voids in coarse aggregate of asphalt mixtures with digital image processing and probability statistics[J]. Journal of Tongji University(Natural Science), 2010, 38(12): 1792-1795.
[11] BOZORGZAD A. Consistent distribution of air voids and asphalt and random orientation of aggregates by flipping specimens during gyratory compaction process[J]. Construction and Building Materials, 2017, 132: 376-382.
[12] LIN H M, WILLSON A N. Median filters with adaptive length[J]. IEEE Transactions on Circuits and Systems, 1988, 35(6): 675-690.
[13] BELAID L J, MOUROU W. Image segmentation: a watershed transformation algorithm[J]. Image Analysis & Stereology, 2009, 28(2): 93-102.
[14] XU X, XU S, JIN L, et al. Characteristic analysis of Otsu threshold and its applications[J]. Pattern Recognition Letters, 2011, 32(7): 956-961.
[15] COENEN A R, KUTAY M E, SEFIDMAZGI N R, et al. Aggregate structure characterisation of asphalt mixtures using two-dimensional image analysis[J]. Road Materials and Pavement Design, 2012, 13(3): 433-454.
[16] SHI L, WANG D, JIN C, et al. Measurement of coarse aggregates movement characteristics within asphalt mixture using digital image processing methods[J]. Measurement, 2020, 163: 107948-107961.
[17] ROTHER C, KOLMOGOROV V, BLAKE A. "GrabCut" interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics(TOG), 2004, 23(3): 309-314.
[18] KRISHNA K, MURTY M N. GeneticK-means algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B(Cybernetics), 1999, 29(3): 433-439.
[19] HU X, FANG H, YANG J, et al. Online measurement and segmentation algorithm of coarse aggregate based on deep learning and experimental comparison[J]. Construction and Building Materials, 2022, 327: 127033.
[20] 胡祥. 基于空隙率预测的粗骨料形态测量及表征方法[D]. 厦门: 华侨大学, 2022. HU Xiang. Measurement and characterization of coarse aggregate morphology based on predicted void content [D]. Xiamen: Huaqiao University, 2022.
[21] HARTIGAN J A. Bayes theory[M]. Berlin:Springer Science & Business Media, 2012.
[22] KELLER J M, GRAY M R, GIVENS J A. A fuzzy k-nearest neighbor algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985(4): 580-585.
[23] NOBLE W S. What is a support vector machine?[J]. Nature Biotechnology, 2006, 24(12): 1565-1567.
[24] BIAU G, SCORNET E. A random forest guided tour[J]. Test, 2016, 25: 197-227.
[25] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
[26] GERAETS W G, VAN DAATSELAAR A, VERHEIJ J. An efficient filling algorithm for counting regions[J]. Computer Methods and Programs in Biomedicine, 2004, 76(1): 1-11.
[27] WANG F, XIAO Y, CUI P, et al. Effect of aggregate morphologies and compaction methods on the skeleton structures in asphalt mixtures[J]. Construction and Building Materials, 2020, 263: 120220.
[28] ANDERSON R M, BUKOWSKI J R, TURNER P A. Using superpave performance tests to evaluate asphalt mixtures[J]. Transportation Research Record, 1999, 1681(1): 106-112.
[29] WIDYATMOKO I. Mechanistic-empirical mixture design for hot mix asphalt pavement recycling[J]. Construction and Building materials, 2008, 22(2): 77-87.
[30] COREE B, HISLOP W P. A laboratory investigation into the effects of aggregate-related factors of critical VMA in asphalt paving mixtures [R]. Ames: Iowa State University,Center for Transportation Research and Educa-tion, 2000.
[31] PROWELL B D, ZHANG J, BROWN E R. Aggregate properties and the performance of superpave-designed hotmix asphalt[M]. Washington: Transportation Research Board, US, 2005.
[32] 董继红, 谢宇欣, 薛永超, 等. 芜湖长江公铁大桥ER铺装体系EBCL层碎石方案优化研究[J]. 市政技术, 2022,40(8): 12-15. DONG Jihong, XIE Yuxin, XUE Yongchao, et al. Research on crushed stone optimization in EBCL layer of ER pavement system of the Third Yangtze River Bridge in Wuhu[J]. Municipal Technology, 2022, 40(8): 12-15.
[33] JIANG Y, TIAN T, DENG C, et al. Effects ofcement content, curing period, gradation, and compaction degree on mechanical behavior of cement-stabilized crushed gravel produced via vertical vibration test method[J]. Advances in Civil Engineering, 2020: 1-13.
[34] 李鹏飞, 尹国宏. 沥青稳定碎石过渡层对沥青路面结构力学响应的影响[J].市政技术, 2022, 40(2): 8-13. LI Pengfei, YIN Guohong. Influence of asphalt stabilized macadam transition layer on mechanical response of asphalt pavement structure[J]. Municipal Technology, 2022, 40(2): 8-13.
[35] MYLES A J, FEUDALE R N, LIU Y, et al. An introduction to decision tree modeling[J]. Journal of Chemometrics: a Journal of the Chemometrics Society, 2004, 18(6): 275-85.
[36] LIU S, CAO W, QI X, et al. Research and application of statistical law of VCA formed from the packing of basalt coarse aggregates[J]. Construction and Building Materials, 2014, 71: 484-491.
[1] 岳仁峰,张嘉琦,刘勇,范学忠,李琮琮,孔令鑫. 基于颜色和纹理特征的立体车库锈蚀检测技术[J]. 山东大学学报 (工学版), 2024, 54(3): 64-69.
[2] 韩天雨,路长厚,李建美,尹昂,侯秋林. 利用图像处理技术测量丝杠螺距的机器视觉系统[J]. 山东大学学报 (工学版), 2022, 52(3): 80-85.
[3] 孟银凤,李庆方. 基于多元函数主成分表示的识别学习[J]. 山东大学学报 (工学版), 2022, 52(3): 1-8.
[4] 宋怀雷, 邬忠虎, 李利平, 娄义黎, 孙文吉斌, 刘镐, 左宇军. 基于数字图像的微观尺度下方解石脉对页岩各向异性的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 91-99.
[5] 刘新锋, 张旖旎,徐惠三,宋玲,陈梦雅. 基于随机森林和专家系统的分布式光伏电站阴影遮挡诊断[J]. 山东大学学报 (工学版), 2021, 51(2): 98-104.
[6] 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13.
[7] 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33.
[8] 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法[J]. 山东大学学报(工学版), 2018, 48(4): 10-19.
[9] 孟令恒,丁世飞. 基于单静态图像的深度感知模型[J]. 山东大学学报(工学版), 2016, 46(3): 37-43.
[10] 梁玮1,2,陶亮3,张光先1,李振华1. 基于特征提取和极值搜索的焊接缺陷检测算法[J]. 山东大学学报(工学版), 2014, 44(3): 48-51.
[11] 邱晓欣1,2,张文强1,2*,秦晋贤1,2,杜正阳1,2,张德峰1,2. 恶劣环境下多目标实时跟踪算法研究[J]. 山东大学学报(工学版), 2014, 44(2): 21-27.
[12] 周新波1,徐向锋2*,张峰3,孙家龙3,齐广志3. 箱梁竖向预应力张拉力无损检测研究[J]. 山东大学学报(工学版), 2013, 43(6): 77-82.
[13] 潘晟旻1,2,钟毅1*,王建华2. 基于改进Canny算子的坯料挤压变形边缘提取[J]. 山东大学学报(工学版), 2013, 43(5): 19-23.
[14] 徐姗姗,刘应安*,徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2): 23-28.
[15] 房晓南1,2,张化祥1,2*,高爽1,2. 基于SMOTE和随机森林的Web spam检测[J]. 山东大学学报(工学版), 2013, 43(1): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!