山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (6): 89-99.doi: 10.6040/j.issn.1672-3961.0.2023.134
• 土木工程 • 上一篇
鲁志恒1,霍延强2*,韩汶1,杜聪2,刘轶鹏2,张宏博2
LU Zhiheng1, HUO Yanqiang2*, HAN Wen1, DU Cong2, LIU Yipeng2, ZHANG Hongbo2
摘要: 为解决传统碎石集料检测方法中存在的破坏性检测、代表性不足、人工操作误差、费时费力及检测不连续等问题,提出一种连续、无损、快速且准确的碎石集料空隙率检测新方法。使用摄像设备采集振实后的碎石集料表面图像,并利用图像处理技术提取碎石集料的表面图像数据;分析提取到的图像信息,建立体现碎石集料表面特征的图像指标体系;使用提取到的图像指标、集料用量和级配信息作为输入数据,采用随机森林方法对碎石集料的空隙率进行预测;设计室内压实模拟试验方案,收集65组不同用量和级配的碎石集料空隙率测定结果,构建用于机器学习模型训练的数据集。结果显示,所提议方法在测试集上的平均绝对百分比误差为1.69%、平均绝对值误差为0.589、均方根误差为0.914、相关指数为0.974、预测精度达到98.31%,可实现连续、无损、快速、准确的碎石集料空隙率实时检测。
中图分类号:
[1] 陈云, 胡志刚, 徐晗. 灌水法检测堆石体密度影响因素分析与控制措施[J]. 岩土工程学报, 2017, 39(1): 177-181. CHEN Yun, HU Zhigang, XU Han. Influence factors and control measures for the density of rockfill by using irrigation method[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 177-181. [2] 马林, 陈佩林, 徐科, 等. 粗集料颗粒几何形状对 VCA_(DRC)的影响研究[J]. 公路交通科技, 2007, 24(12): 5-9. MA Lin, CHEN Peilin,XU Ke, et al. Effect of coarse aggregate shape on VCA_(DRC)[J]. Journal of Highway and Transportation Research and Development, 2007, 24(12): 5-9. [3] 张小伟, 肖瑞敏, 张雄. 混凝土粗骨料堆积的定量体视学研究[J]. 混凝土, 2011(4): 64-68. ZHANG Xiaowei, XIAO Ruimin, ZHANG Xiong. lmage analysis for package of coarse aggregates used in concrete[J]. Concrete, 2011(4): 64-68. [4] KOOHMISHI M, PALASSI M. Evaluation of morphological properties of railway ballast particles by image processing method[J]. Transportation Geotechnics, 2017, 12: 15-25. [5] ZHAO L, ZHANG S, HUANG D, et al. 3D shape quantification and random packing simulation of rock aggregates using photogrammetry-based reconstruction and discrete element method[J]. Construction and Building Materials, 2020, 262: 119986. [6] HU J, LIU P, WANG D, et al. Influence of aggregates' spatial characteristics on air-voids in asphalt mixture[J]. Road Materials and Pavement Design, 2018, 19(4): 837-855. [7] KIM K, KANG M. Linking the effect of aggregate interaction to the compaction theory for asphalt mixtures using image processing[J]. Applied Sciences, 2018, 8(11): 2045-2062. [8] 李守艳, 刘洪亮, 史鉴. 无养生条件石灰粉煤灰稳定碎石施工技术研究[J].市政技术, 2022, 40(7): 96-100. LI Shouyan, LIU Hongliang, SHI Jian. Research on lime fly ash stabilized crushed-stones without[J]. Municipal Technology, 2022, 40(7): 96-100. [9] 谢远新. 基于均匀试验的振动成型方式下粗集料间隙率研究[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(4): 615-618. XIE Yuanxin. Study on the voids in coarse aggregate by means of vibration molding based on the uniform experiment[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering), 2016, 40(4): 615-618. [10] 吴文亮, 王端宜, 张肖宁, 等. 基于数字图像处理与概率统计方法的 VCA_(mix)研究[J]. 同济大学学报(自然科学版), 2010, 38(12): 1792-1795. WU Wenliang, WANG Duanyi, ZHANG Xiaoning, et al. Research on voids in coarse aggregate of asphalt mixtures with digital image processing and probability statistics[J]. Journal of Tongji University(Natural Science), 2010, 38(12): 1792-1795. [11] BOZORGZAD A. Consistent distribution of air voids and asphalt and random orientation of aggregates by flipping specimens during gyratory compaction process[J]. Construction and Building Materials, 2017, 132: 376-382. [12] LIN H M, WILLSON A N. Median filters with adaptive length[J]. IEEE Transactions on Circuits and Systems, 1988, 35(6): 675-690. [13] BELAID L J, MOUROU W. Image segmentation: a watershed transformation algorithm[J]. Image Analysis & Stereology, 2009, 28(2): 93-102. [14] XU X, XU S, JIN L, et al. Characteristic analysis of Otsu threshold and its applications[J]. Pattern Recognition Letters, 2011, 32(7): 956-961. [15] COENEN A R, KUTAY M E, SEFIDMAZGI N R, et al. Aggregate structure characterisation of asphalt mixtures using two-dimensional image analysis[J]. Road Materials and Pavement Design, 2012, 13(3): 433-454. [16] SHI L, WANG D, JIN C, et al. Measurement of coarse aggregates movement characteristics within asphalt mixture using digital image processing methods[J]. Measurement, 2020, 163: 107948-107961. [17] ROTHER C, KOLMOGOROV V, BLAKE A. "GrabCut" interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics(TOG), 2004, 23(3): 309-314. [18] KRISHNA K, MURTY M N. GeneticK-means algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B(Cybernetics), 1999, 29(3): 433-439. [19] HU X, FANG H, YANG J, et al. Online measurement and segmentation algorithm of coarse aggregate based on deep learning and experimental comparison[J]. Construction and Building Materials, 2022, 327: 127033. [20] 胡祥. 基于空隙率预测的粗骨料形态测量及表征方法[D]. 厦门: 华侨大学, 2022. HU Xiang. Measurement and characterization of coarse aggregate morphology based on predicted void content [D]. Xiamen: Huaqiao University, 2022. [21] HARTIGAN J A. Bayes theory[M]. Berlin:Springer Science & Business Media, 2012. [22] KELLER J M, GRAY M R, GIVENS J A. A fuzzy k-nearest neighbor algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985(4): 580-585. [23] NOBLE W S. What is a support vector machine?[J]. Nature Biotechnology, 2006, 24(12): 1565-1567. [24] BIAU G, SCORNET E. A random forest guided tour[J]. Test, 2016, 25: 197-227. [25] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. [26] GERAETS W G, VAN DAATSELAAR A, VERHEIJ J. An efficient filling algorithm for counting regions[J]. Computer Methods and Programs in Biomedicine, 2004, 76(1): 1-11. [27] WANG F, XIAO Y, CUI P, et al. Effect of aggregate morphologies and compaction methods on the skeleton structures in asphalt mixtures[J]. Construction and Building Materials, 2020, 263: 120220. [28] ANDERSON R M, BUKOWSKI J R, TURNER P A. Using superpave performance tests to evaluate asphalt mixtures[J]. Transportation Research Record, 1999, 1681(1): 106-112. [29] WIDYATMOKO I. Mechanistic-empirical mixture design for hot mix asphalt pavement recycling[J]. Construction and Building materials, 2008, 22(2): 77-87. [30] COREE B, HISLOP W P. A laboratory investigation into the effects of aggregate-related factors of critical VMA in asphalt paving mixtures [R]. Ames: Iowa State University,Center for Transportation Research and Educa-tion, 2000. [31] PROWELL B D, ZHANG J, BROWN E R. Aggregate properties and the performance of superpave-designed hotmix asphalt[M]. Washington: Transportation Research Board, US, 2005. [32] 董继红, 谢宇欣, 薛永超, 等. 芜湖长江公铁大桥ER铺装体系EBCL层碎石方案优化研究[J]. 市政技术, 2022,40(8): 12-15. DONG Jihong, XIE Yuxin, XUE Yongchao, et al. Research on crushed stone optimization in EBCL layer of ER pavement system of the Third Yangtze River Bridge in Wuhu[J]. Municipal Technology, 2022, 40(8): 12-15. [33] JIANG Y, TIAN T, DENG C, et al. Effects ofcement content, curing period, gradation, and compaction degree on mechanical behavior of cement-stabilized crushed gravel produced via vertical vibration test method[J]. Advances in Civil Engineering, 2020: 1-13. [34] 李鹏飞, 尹国宏. 沥青稳定碎石过渡层对沥青路面结构力学响应的影响[J].市政技术, 2022, 40(2): 8-13. LI Pengfei, YIN Guohong. Influence of asphalt stabilized macadam transition layer on mechanical response of asphalt pavement structure[J]. Municipal Technology, 2022, 40(2): 8-13. [35] MYLES A J, FEUDALE R N, LIU Y, et al. An introduction to decision tree modeling[J]. Journal of Chemometrics: a Journal of the Chemometrics Society, 2004, 18(6): 275-85. [36] LIU S, CAO W, QI X, et al. Research and application of statistical law of VCA formed from the packing of basalt coarse aggregates[J]. Construction and Building Materials, 2014, 71: 484-491. |
[1] | 岳仁峰,张嘉琦,刘勇,范学忠,李琮琮,孔令鑫. 基于颜色和纹理特征的立体车库锈蚀检测技术[J]. 山东大学学报 (工学版), 2024, 54(3): 64-69. |
[2] | 韩天雨,路长厚,李建美,尹昂,侯秋林. 利用图像处理技术测量丝杠螺距的机器视觉系统[J]. 山东大学学报 (工学版), 2022, 52(3): 80-85. |
[3] | 孟银凤,李庆方. 基于多元函数主成分表示的识别学习[J]. 山东大学学报 (工学版), 2022, 52(3): 1-8. |
[4] | 宋怀雷, 邬忠虎, 李利平, 娄义黎, 孙文吉斌, 刘镐, 左宇军. 基于数字图像的微观尺度下方解石脉对页岩各向异性的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 91-99. |
[5] | 刘新锋, 张旖旎,徐惠三,宋玲,陈梦雅. 基于随机森林和专家系统的分布式光伏电站阴影遮挡诊断[J]. 山东大学学报 (工学版), 2021, 51(2): 98-104. |
[6] | 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13. |
[7] | 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33. |
[8] | 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法[J]. 山东大学学报(工学版), 2018, 48(4): 10-19. |
[9] | 孟令恒,丁世飞. 基于单静态图像的深度感知模型[J]. 山东大学学报(工学版), 2016, 46(3): 37-43. |
[10] | 梁玮1,2,陶亮3,张光先1,李振华1. 基于特征提取和极值搜索的焊接缺陷检测算法[J]. 山东大学学报(工学版), 2014, 44(3): 48-51. |
[11] | 邱晓欣1,2,张文强1,2*,秦晋贤1,2,杜正阳1,2,张德峰1,2. 恶劣环境下多目标实时跟踪算法研究[J]. 山东大学学报(工学版), 2014, 44(2): 21-27. |
[12] | 周新波1,徐向锋2*,张峰3,孙家龙3,齐广志3. 箱梁竖向预应力张拉力无损检测研究[J]. 山东大学学报(工学版), 2013, 43(6): 77-82. |
[13] | 潘晟旻1,2,钟毅1*,王建华2. 基于改进Canny算子的坯料挤压变形边缘提取[J]. 山东大学学报(工学版), 2013, 43(5): 19-23. |
[14] | 徐姗姗,刘应安*,徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2): 23-28. |
[15] | 房晓南1,2,张化祥1,2*,高爽1,2. 基于SMOTE和随机森林的Web spam检测[J]. 山东大学学报(工学版), 2013, 43(1): 22-27. |
|