山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (4): 122-130.doi: 10.6040/j.issn.1672-3961.0.2023.192
孙悦1,张文亮2,张建鹏3*,王蕾4,李鹏1,杨飞宇1,何灵垚1
SUN Yue1, ZHANG Wenliang2, ZHANG Jianpeng3*, WANG Lei4, LI Peng1, YANG Feiyu1, HE Lingyao1
摘要: 为研究硫酸根离子侵蚀效应对钙质砂吹填岛礁注浆加固钙质砂地基服役性能的影响,采用耦合温度和离子浓度的加速侵蚀方法,基于海水侵蚀试验装置开展不同水泥类型、侵蚀时间、水灰比条件下硫酸根离子对于注浆结石体性能的弱化试验。获得海水中硫酸根离子对注浆结石体力学性能及渗透性能的影响规律,并对侵蚀后的注浆结石体进行微观测试,揭示硫酸根离子对钙质砂注浆结石体的侵蚀弱化机理。试验结果表明,硫酸根离子渗透注浆结石体内部与水化反应产物发生反应生成石膏以及钙矾石等产物引发注浆结石体发生侵蚀破坏,而动水环境会加剧硫酸根离子对注浆结石体的侵蚀弱化效应,动水侵蚀组结石体在侵蚀时间为3.28 a时,抗压强度为5.41 MPa,较淡水对照组降低23.9%;渗透系数为7.159×10-5 cm/s,较淡水对照组增大6.691×10-5 cm/s。
中图分类号:
[1] 万志辉, 戴国亮, 龚维明, 等. 钙质砂后压浆桩水平承载性状模型试验研究[J]. 岩土力学, 2021, 42(2): 411-418. WAN Zhihui, DAI Guoliang, GONG Weiming, et al. Model test study on horizontal bearing behavior of post-grouting pile in calcareous sand[J]. Rock and Soil Mechanics, 2021, 42(2): 411-418. [2] 刘鑫. 钙质砂动力特性试验研究[D]. 天津: 天津大学, 2018. LIU Xin. Experimental study on dynamic characteristics of calcareous sand[D]. Tianjin: Tianjin University, 2018. [3] 霍玉龙, 王雪晴, 姜开放, 等. 颗粒形状对钙质砂渗透性的影响试验研究[J]. 土工基础, 2022, 36(3): 437-441. HUO Yulong, WANG Xueqing, JIANG Kaifang, et al. Experimental study on the influence of particle shape on the permeability of calcareous sand[J]. Soil Engineering and Foundation, 2022, 36(3): 437-441. [4] 曾召田, 梁珍, 孙凌云, 等. 水泥胶结钙质砂导热系数的影响因素试验研究[J]. 岩土力学, 2022, 43(增刊1): 88-96. ZENG Zhaotian, LIANG Zhen, SUN Lingyun, et al. Experimental study on influencing factors of thermal conductivity of cement bonded calcareous sand[J]. Rock and Soil Mechanics, 2022, 43(Suppl.1): 88-96. [5] 朱长岐, 陈海洋, 孟庆山, 等. 钙质砂颗粒内孔隙的结构特征分析[J]. 岩土力学, 2014, 35(7): 1831-1836. ZHU Changqi, CHEN Haiyang, MENG Qingshan, et al. Analysis of structural characteristics of pores in calcareous sand particles[J]. Rock and Soil Mechanics, 2014, 35(7): 1831-1836. [6] 张家铭, 汪稔, 石祥锋, 等. 侧限条件下钙质砂压缩和破碎特性试验研究[J]. 岩石力学与工程学报, 2005(18): 3327-3331. ZHANG Jiaming, WANG Ren, SHI Xiangfeng, et al. Experimental study on compression and crushing characteristics of calcareous sand under confined conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2005(18): 3327-3331. [7] 朱长岐, 周斌, 刘海峰, 等. 天然胶结钙质土强度及微观结构研究[J]. 岩土力学, 2014, 35(6): 1655-1663. ZHU Changqi, ZHOU Bin, LIU Haifeng, et al. Study on strength and microstructure of natural cemented calcareous soil[J]. Rock and Soil Mechanics, 2014, 35(6): 1655-1663. [8] 刘家易. 珊瑚砂地基中X形桩竖向承载特性试验研究[D]. 重庆: 重庆大学, 2018. LIU Jiayi. Experimental study on vertical bearing characteristics of X-shaped pile in coral sand foundation [D]. Chongqing: Chongqing University, 2018. [9] 张庆松, 张连震, 李鹏, 等. 地下工程富水软弱地层注浆加固理论研究新进展[J]. 隧道与地下工程灾害防治, 2019, 1(1): 47-57. ZHANG Qingsong, ZHANG Lianzhen, LI Peng, et al. New progress of theoretical research on grouting reinforcement of water-rich and weak strata in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47-57. [10] 王建圣, 蒋志斌, 李丽超. 隧道岩体贯通节理面注浆加固力学响应特征研究[J]. 隧道与地下工程灾害防治, 2023, 5(2): 80-88. WANG Jiansheng, JIANG Zhibin, LI Lichao. Study on mechanical response characteristics of tunnel rock mass through joint surface reinforced by grouting[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(2): 80-88. [11] 莫家权, 耿汉生, 许宏发, 等. 钙质砂地基注浆加固研究现状[J]. 中国水运(下半月), 2020, 20(11): 152-153. MO Jiaquan, GENG Hansheng, XU Hongfa, et al. Research status of grouting reinforcement of calcareous sand foundation[J].China Water Transport, 2020, 20(11): 152-153. [12] 杨殷豪, 许宏发, 李可良, 等. 吹填钙质砂渗透注浆可注性试验研究[J]. 防护工程, 2020, 42(5): 10-17. YANG Yinhao, XU Hongfa, LI Keliang, et al. Experimental study on groutability of permeable grouting in dredger fill calcareous sand[J]. Protective Engineering, 2020, 42(5): 10-17. [13] 张涛麟, 耿汉生, 许宏发, 等. 钙质砂注浆加固材料制备及固结体性能试验研究[J]. 岩土力学, 2022, 43(增刊2): 327-336. ZHANG Taolin, GENG Hansheng, XU Hongfa, et al. Preparation of calcium sand grouting reinforcement material and experimental study on consoildation performance[J]. Rock and Soil Mechanics, 2022, 43(Suppl.2): 327-336. [14] 矫慧慧, 陈昊, 赫庆坤, 等. 纳米SiO2-超细水泥固化钙质砂静力特性试验[J]. 岩土工程技术, 2022, 36(3): 252-258. JIAO Huihui, CHEN Hao, HE Qingkun, et al. Static characteristics test of nano-SiO2-ultrafine cement solidified calcareous sand[J]. Geotechnical Engineering Technique, 2022, 36(3): 252-258. [15] 莫家权, 耿汉生, 马林建, 等. 海水养护钙质砂注浆结石体的力学性能试验[J]. 陆军工程大学学报, 2022, 1(4): 58-65. MO Jiaquan, GENG Hansheng, MA Linjian, et al. Mechanical performance test of calcareous sand grouting stone body cured by seawater[J]. Journal of Army Engineering University of PLA, 2022, 1(4): 58-65. [16] 李艺隆, 国振, 徐强, 等. 海水环境下MICP胶结钙质砂干湿循环试验研究[J]. 浙江大学学报(工学版), 2022, 56(9): 1740-1749. LI Yilong, GUO Zhen, XU Qiang, et al. Experimental study on dry-wet cycle of MICP cemented calcareous sand in seawater environment[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(9): 1740-1749. [17] 万志辉, 戴国亮, 龚维明, 等. 海水侵蚀环境对钙质砂水泥土强度影响及微观结构研究[J]. 岩土工程学报, 2020, 42(增刊1): 65-69. WAN Zhihui, DAI Guoliang, GONG Weiming, et al. Study on the influence of seawater erosion environment on the strength and microstructure of calcareous sand cement soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(Suppl.1): 65-69. [18] 刘亚南. 海水侵蚀条件下注浆加固体力学性能劣化规律及耐久性[D]. 济南: 山东大学, 2019. LIU Yanan. Deterioration of physical properties and durability of grouting reinforcement under seawater erosion conditions[D]. Jinan: Shandong University, 2019. [19] CORDULA J, DANIEL J, JOACHIM D, et al. Controlling ettringite precipitation and rheological behavior in ordinary Portland cement paste by hydration control agent, temperature and mixing[J]. Cement and Concrete Research, 2023, 166: 107095. [20] REN Changzai, WU Shuang, WANG Wenlong, et al. Recycling of hazardous and industrial solid waste as raw materials for preparing novel high-temperature-resistant sulfoaluminate-magnesia aluminum spinel cement[J]. Journal of Building Engineering, 2023, 64: 105550. [21] LÜ Yang, LU Kai, REN Yongsheng. Composite crystallization fouling characteristics of normal solubility salt in double-pipe heat exchanger[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119883. [22] CHEN Ying, LIU Peng, ZHANG Rongling, et al. Chemical kinetic analysis of the activation energy of diffusion coefficient of sulfate ion in concrete[J]. Chemical Physics Letters, 2020, 753: 137596. [23] SANTHANAM M, COHEN M D, OLEK J. Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars[J]. Cement and Concrete Research, 2002, 32(4): 585-592. |
[1] | 邢志豪,朱斌,王健,孙培芹,武科,徐嘉祥,孙杰,郑扬. 溶洞注浆加固的空间属性对地铁盾构隧道建设安全的影响效应[J]. 山东大学学报 (工学版), 2022, 52(4): 183-190. |
[2] | 夏梦然,李卫,冯啸,朱光轩,李夏. 极浅埋富水砂层地铁横通道注浆加固与开挖稳定性[J]. 山东大学学报(工学版), 2017, 47(2): 47-54. |
[3] | 冯啸1,张乐文1*,刘人太1,张崇高2,孙子正1,张伟杰1. 碱土加固注浆材料试验及其工程应用[J]. 山东大学学报(工学版), 2013, 43(6): 65-71. |
|