山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (4): 115-121.doi: 10.6040/j.issn.1672-3961.0.2023.117
董伟1,2,朱相茹1*,王雪松1,周梦虎1
DONG Wei1,2, ZHU Xiangru1*, WANG Xuesong1, ZHOU Menghu1
摘要: 为探究干湿循环作用下风积沙混凝土内部微观结构的演变规律,试验采用河砂质量的0、25%、50%、75%及100%的风积沙替代河砂制备混凝土,在NaCl质量分数为3.5%的溶液中进行干湿循环试验。利用扫描电镜、核磁共振等技术对氯盐干湿循环作用下风积沙混凝土(aeolian sand concrete, ASC)的微观结构及氯离子侵蚀机理进行分析。结果表明:随风积沙质量分数增大,ASC内部自由氯离子质量分数先减小后增大;随侵蚀深度的增加,自由氯离子质量分数逐渐减小;氯盐干湿循环使ASC内部产生了大量盐结晶,结晶压力造成ASC内部孔结构劣化,核磁共振T2图谱不断右移,其中采用河砂质量的100%的风积沙替代河砂的混凝土(A100)在氯盐干湿循环过程中损伤最严重。
中图分类号:
[1] BAI J, XU R, ZHAO Y, et al. Flexural fatigue behavior and damage evolution analysis of aeolian sand concrete under freeze-thaw cycle[J]. International Journal of Fatigue, 2023, 171: 107583. [2] TIAN Y, JIN N G, JIN X Y. Coupling effect of temperature and relative humidity diffusion in concrete under ambient conditions[J]. Construction and Building Materials, 2018, 159: 673-689. [3] ZHANG D S, MAO M J, ZHANG S R, et al. Influence of stress damage and high temperature on the freeze-thaw resistance of concrete with fly ash as fine aggregate[J]. Construction and Building Materials, 2019, 229: 116845. [4] ZHANG G H, LIZ L, ZHANG L F, et al. Experimental research on drying control condition with minimal effect on concrete strength[J]. Construction and Building Materials, 2017, 135: 194-202. [5] NIU X J, LIQ B, LIU W J, et al. Effects of ambient temperature, relative humidity and wind speed on interlayer properties of dam concrete[J]. Construction and Building Materials, 2020, 260: 119791. [6] 王静薇. 混凝土细微观结构与强度的关系[D]. 杭州: 浙江大学, 2007. WANG Jingwei. The relationship between fine microstructure and the strength of concrete[D]. Hangzhou: Zhejiang University, 2007. [7] 蔡健, 李名铠, 陈庆军, 等. 干湿循环下受弯钢筋混凝土梁的氯盐侵蚀[J]. 中南大学学报(自然科学版), 2019, 50(11): 2840-2850. CAI Jian, LI Mingkai, CHEN Qingjun, et al. Chloride salt erosion of bent reinforced concrete beams under dry and wet cycles[J]. Journal of Central South University(Natural Science Edition), 2019, 50(11): 2840-2850. [8] JIANG L, NIU D. Study of deterioration of concrete exposed to different types of sulfate solutions under drying-wetting cycles[J]. Construction and Building Materials, 2016, 117: 88-98. [9] LIU H, LIU C, BAI G, et al. Study on the effect of chloride ion ingress on the pore structure of the attached mortar of recycled concrete coarse aggregate[J]. Construction and Building Materials, 2020, 263: 120123. [10] 陈克凡, 乔宏霞, 王鹏辉, 等. 基于NMR的再生混凝土干湿循环可靠性评估[J]. 华中科技大学学报(自然科学版), 2020, 48(7): 88-92. CHEN Kefan, QIAO Hongxia, WANG Penghui, et al. Reliability assessment of wet and dry cycles of recycled concrete based on NMR[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(7): 88-92. [11] 赵喜云, 吴建华. 氯盐干湿循环作用下混凝土力学性能与孔结构变化研究[J]. 水利水电技术, 2020, 51(4): 220-226. ZHAO Xiyun, WU Jianhua. Study on mechanical properties and pore structure changes of concrete under chloride salt dry and wet cycling[J]. Water Resources and Hydropower Technology, 2020, 51(4): 220-226. [12] 中华人民共和国住房和城乡建设部.普通混凝土配合比设计规程: JGJ55—2011[S]. 北京:中国建筑工业出版社,2011. [13] 中华人民共和国交通运输部.水运工程混凝土试验检测技术规范: JTS/T236—2019[S]. 北京:人民交通出版社,2019. [14] YUAN J, LIU Y, TAN Z, et al. Investigating the failure process of concrete under the coupled actions between sulfate attack and drying-wetting cycles by using X-ray CT[J]. Construction and Building Materials, 2016, 108: 129-138. [15] 李永强, 巴明芳, 柳俊哲, 等. 干湿循环作用下水泥基复合材料抗氯离子侵蚀[J]. 复合材料学报, 2017, 34(12): 2856-2865. LI Yongqiang, BA Mingfang, LIU Junzhe, et al. Chloride ion erosion resistance of cementitious composites and their microstructural changes under dry and wet cycling[J]. Journal of Composite Materials, 2017, 34(12): 2856-2865. [16] LI Y, ZHANG H, LIU X, et al. Time-varying compressive strength model of aeolian sand concrete considering the harmful pore ratio variation and heterogeneous nucleation effect[J]. Advances in Civil Engineering, 2019, 2019: 1-15. [17] 韩学强, 詹树林, 徐强, 等. 干湿循环作用对混凝土抗氯离子渗透侵蚀性能的影响[J]. 复合材料学报, 2020, 37(1): 198-204. HAN Xueqiang, ZHAN Shulin, XU Qiang, et al. Effects of dry and wet cycling on the resistance of concrete to chloride ion penetration and erosion[J]. Journal of Composite Materials, 2020,37(1): 198-204. [18] 肖阳. 风积沙混凝土水分和氯离子传输行为及寿命预测[D]. 包头: 内蒙古科技大学, 2021. XIAO Yang. Water and chloride ion transport behavior and life prediction of aeolian sand concrete[D]. Baotou:Inner Mongolia University of Science and Technology, 2021. [19] QU K, LI G, YU C, et al. Evaluation method of pore throat distribution in tight sandstones based on NMR T2 spectrum[J]. Mud Logging Engineering, 2023, 34(2): 1-8. [20] DU J, SHEN X, LI C, et al. Effect of dry-wet cycles on the strength and deformation of the red-bed rockfill material in western Yunnan[J]. Frontiers in Earth Science, 2023, 11: 1192269. [21] LI Y, ZHANG H, LIU G, et al. Multi-scale study on mechanical property and strength prediction of aeolian sand concrete[J]. Construction and Building Materials, 2020, 247: 118538. [22] 刘倩, 申向东, 薛慧君, 等. 氯盐侵蚀和干湿循环条件下浮石混凝土的耐久性[J]. 农业工程学报, 2018, 34(21): 137-143. LIU Qian, SHEN Xiangdong, XUE Huijun, et al. Durability of pumice concrete under chloride salt erosion and dry-wet cycling conditions[J]. Journal of Agricultural Engineering, 2018, 34(21): 137-143. |
[1] | 董伟,周梦虎,王雪松,薛刚,王栋. 碳化-冻融作用对风积沙混凝土氯离子传输的影响[J]. 山东大学学报 (工学版), 2024, 54(1): 123-130. |
[2] | 周勇,李召峰,左志武,王川,林春金,张新,姚望. 滨海岩溶注浆充填体性能研究[J]. 山东大学学报 (工学版), 2022, 52(1): 103-110. |
[3] | 宋怀雷, 邬忠虎, 李利平, 娄义黎, 孙文吉斌, 刘镐, 左宇军. 基于数字图像的微观尺度下方解石脉对页岩各向异性的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 91-99. |
[4] | 刘德琦,张帆,范同祥. 蝶翅结构负载银颗粒表面增强拉曼散射性能[J]. 山东大学学报(工学版), 2016, 46(1): 93-98. |
[5] | 杨发展1 ,艾兴1 ,赵军1 ,侯建锋2 . ZrO2含量对WC基复合材料的力学性能和微观结构的影响[J]. 山东大学学报(工学版), 2009, 39(1): 92-95. |
[6] | 薛强,艾兴,赵军,周咏辉,袁训亮 . 纳米TiC对Si3N4基复合陶瓷材料性能和微观结构的影响[J]. 山东大学学报(工学版), 2008, 38(3): 69-72 . |
|