您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (3): 64-69.doi: 10.6040/j.issn.1672-3961.0.2023.099

• 机器学习与数据挖掘 • 上一篇    

基于颜色和纹理特征的立体车库锈蚀检测技术

岳仁峰1,张嘉琦2,刘勇1*,范学忠1,李琮琮3,孔令鑫3   

  1. 1.山东爱普电气设备有限公司济南高新分公司, 山东 济南 250107;2.山东大学控制科学与工程学院, 山东 济南 250061;3.国网山东省电力公司电力科学研究院, 山东 济南 250003
  • 发布日期:2024-06-28
  • 作者简介:岳仁峰(1989— ),男,山东济南人,工程师,硕士,主要研究方向为电气设备与智能检测. E-mail:gxq8452@163.com. *通信作者简介:刘勇(1977— ),男,山东济南人,工程师,主要研究方向为电气设备与智能检测. E-mail:1906955356@qq.com
  • 基金资助:
    山东省重点研发计划(重大科技创新工程)资助项目(2021CXGC010301)

Corrosion detection technology of stereo garage based on color and texture features

YUE Renfeng1, ZHANG Jiaqi2, LIU Yong1*, FAN Xuezhong1, LI Congcong3, KONG Lingxin3   

  1. 1. Jinan High-tech Branch, Shandong Aipu Electrical Equipment Co., Ltd., Jinan 250107, Shandong, China;
    2. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China;
    3. State Grid Shandong Electric Power Research Institute, Jinan 250003, Shandong, China
  • Published:2024-06-28

摘要: 针对立体车库锈蚀检测的迫切需求,提出基于颜色和纹理特征的锈蚀检测新方法。利用高斯滤波和伽马变换解决锈蚀图片光照不均匀的问题。采用HSV(hue saturation value)色彩空间实现锈蚀的颜色特征筛选,提出基于灰度共生矩阵进行锈蚀纹理特征分析的方法,对锈蚀区域进行测量和形状分析。结合方向梯度直方图(histogram of oriented gradients, HOG)特征提取和支持向量机(support vector machine, SVM)算法实现了立体车库锈蚀检测。试验结果表明,该方法锈蚀识别准确率达到93.19%,实现了立体车库锈蚀表面的视觉检测,大大减少了外部环境的干扰。

关键词: 锈蚀检测, 图像处理, GrabCut算法, HSV色彩模型, 机器学习

中图分类号: 

  • TP391.4
[1] 宋雨萌,谷峪,李芳芳,等. 人工智能赋能的查询处理与优化新技术研究综述[J]. 计算机科学与探索, 2020, 14(7): 1081-1103. SONG Yumeng, GU Yu, LI Fangfang, et al. Survey on AI powered new techniques for query processing and optimization[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1081-1103.
[2] 陈宗泉. 立体车库的特点、应用及其发展前景探讨[J]. 全面腐蚀控制, 2021, 35(4): 42-44. CHEN Zongquan. The characteristics application and development prospect of stereo garage are discussed[J]. Total Corrosion Control, 2021, 35(4): 42-44.
[3] 许家豪. 垂直旋转式立体车库设计[J]. 电子测试, 2022, 36(4): 21-22. XU Jiahao. Vertical revolving stereo garage design[J]. Electronic Testing, 2022, 36(4): 21-22.
[4] 王艳平,封云,刘洋,等. 某车库框架梁钢筋锈蚀检测鉴定[J]. 工程质量, 2020, 38(5): 106-108. WANG Yanping, FENG Yun, LIU Yang, et al. Detection and identification of steel corrosion of a garage frame beam[J]. Project Quality, 2020, 38(5): 106-108.
[5] 刘伟军, 田泽琦, 卞宏友, 等. 基于机器视觉的钢材锈蚀表面激光清洗检测方法[J]. 应用激光, 2021,41(6): 1287-1292. LIU Weijun, TIAN Zeqi, BIAN Hongyou, et al. Laser cleaning detection method for rust layer of steel based on machine vision[J]. Applied Laser, 2021, 41(6): 1287-1292.
[6] 宋伟,左丹,邓邦飞,等.高压输电线防震锤锈蚀缺陷检测[J]. 仪器仪表学报, 2016, 37(增刊1): 113-117. SONG Wei, ZUO Dan, DENG Bangfei, et al. Corrosion defect detection of earthquake hammer for high voltage transmission line[J]. Chinese Journal of Scientific Instrument, 2016, 37(Suppl.1): 113-117.
[7] VOROBEL R, LVASENKO I, BEREHULYAK O, et al. Segmentation of rust defects on painted steel surfaces by intelligent image analysis[J]. Automation in Construction, 2021(123): 103515.
[8] 琚泽立,孔志战,侯喆,等. 面向输电线路的锈蚀缺陷检测[J]. 电工技术, 2020(17):77-81. JU Zeli, KONG Zhizhan, HOU Zhe, et al. Corrosion defect detection for transmission lines[J]. Electric Engineering, 2020(17): 77-81.
[9] GIBBONS T, PIERCE G, WORDENK A. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection[J]. Structural Health Monitoring, 2018(5):1110-1128.
[10] VALETI B, PAKZAD S. Automated detection of corrosion damage in power transmission lattice towers using image processing[C] //Structures Congress. Denver, USA: Scopus, 2017:474-481.
[11] NELSON B N, SLEBODNICK P, LEMIEUX E J, et al. Wavelet processing for image de-noising and edge detection in automatic corrosion detection algorithms used in shipboard ballast tank video inspection systems[C] //Proceedings of SPIE, the International Society for Optical Engineering. Bellingham, USA:SPIE, 2001: 134-145.
[12] 邹翔,潘兵,王延珺,等. 高斯预滤波对数字体图像相关测量的影响[J].光学学报, 2021, 41(15): 140-150. ZOU Xiang, PAN Bing, WANG Yanjun, et al. Effect of Gaussian prefiltering on digital volume correlation measurement[J]. Acta Optica Sinica, 2021, 41(15): 140-150.
[13] AYKUT M, AKTURK S M. An improvement on GrabCut with CLAHE for the segmentation of the objects with ambiguous boundaries[M]. Póvoa de Varzim, Portugal: Springer International Publishing, 2018:116-122.
[14] IVASENKO I, CHERVATYUK V.Detection of rust defects of protective coatings based on HSV color model[C] //Proceedings of the 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering(UKRCON). Lviv, Ukraine: IEEE, 2019: 1143-1145.
[15] BILAL M, HANIF M S. Benchmarkrevision for HOG-SVM pedestrian detector through reinvigorated training and evaluation methodologies[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3):1277-1287.
[16] 闫丽梅,刘永强,徐建军,等. 基于Grabut分割和填充物面积判别的复合绝缘子断串诊断[J]. 电力系统保护与控制, 2021, 49(22): 114-119. YAN Limei, LIU Yongqiang, XU Jianjun, et al. Broken string diagnosis of composite insulator based on GrabCut segmentation and filler area discrimination[J]. Power System Protection and Control, 2021, 49(22): 114-119.
[17] 陈滔,张庆国,刘澳. 基于灰度共生矩阵的图形纹理检测及焊接缺陷的SVM分类实现[J]. 洛阳理工学院学报(自然科学版), 2022, 32(1): 53-61. CHEN Tao, ZHANG Qingguo, LIU Ao. SVM classification implementation of graphic texture detection and welding defects based on gray level co-occurrence matrix[J]. Journal of Luoyang Institute of Science and Technology(Natural Science Edition), 2022, 32(1): 53-61.
[18] WU Y, WANG D K, WANG L, et al. An analysis of the meso-structural damage evolution of coal using X-ray CT and a gray-scale level co-occurrence matrix method[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 152: 105062.
[19] SIQUEIRA D, ROBERTI F. Multi-scale gray level co-occurrence matrices for texture description[J]. Neurocomputing(Amsterdam), 2015(120): 336-345.
[1] 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法[J]. 山东大学学报 (工学版), 2024, 54(3): 55-63.
[2] 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪[J]. 山东大学学报 (工学版), 2024, 54(1): 100-108.
[3] 李鸿钊,张庆松,刘人太,陈新,辛勤,石乐乐. 浅埋地铁车站施工期地表变形风险预警[J]. 山东大学学报 (工学版), 2023, 53(6): 82-91.
[4] 卞小曼,王小琴,蓝如师,刘振丙,罗笑南. 基于相似性保持和判别性分析的快速视频哈希算法[J]. 山东大学学报 (工学版), 2023, 53(6): 63-69.
[5] 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44.
[6] 韩天雨,路长厚,李建美,尹昂,侯秋林. 利用图像处理技术测量丝杠螺距的机器视觉系统[J]. 山东大学学报 (工学版), 2022, 52(3): 80-85.
[7] 聂秀山,马玉玲,乔慧妍,郭杰,崔超然,于志云,刘兴波,尹义龙. 任务粒度视角下的学生成绩预测研究综述[J]. 山东大学学报 (工学版), 2022, 52(2): 1-14.
[8] 孙鸿昌,周风余,单明珠,翟文文,牛兰强. 基于模式划分的空调能耗混合填补方法[J]. 山东大学学报 (工学版), 2022, 52(1): 9-18.
[9] 宋怀雷, 邬忠虎, 李利平, 娄义黎, 孙文吉斌, 刘镐, 左宇军. 基于数字图像的微观尺度下方解石脉对页岩各向异性的影响[J]. 山东大学学报 (工学版), 2021, 51(5): 91-99.
[10] 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13.
[11] 袁高腾,刘毅慧,黄伟,胡兵. 基于Gabor特征的乳腺肿瘤MR图像分类识别模型[J]. 山东大学学报 (工学版), 2020, 50(3): 15-23.
[12] 高铭壑,张莹,张蓉蓉,黄子豪,黄琳焱,李繁菀,张昕,王彦浩. 基于预测数据特征的空气质量预测方法[J]. 山东大学学报 (工学版), 2020, 50(2): 91-99.
[13] 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33.
[14] 张大鹏,刘雅军,张伟,沈芬,杨建盛. 基于异质集成学习的虚假评论检测[J]. 山东大学学报 (工学版), 2020, 50(2): 1-9.
[15] 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!