山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (6): 92-99.doi: 10.6040/j.issn.1672-3961.0.2022.258
• 土木工程 • 上一篇
江健宏1,舒晓锐1,刘志鲲2*,孙杰3,荆树举2,张宏博2
JIANG Jianhong1, SHU Xiaorui1, LIU Zhikun2*, SUN Jie3, JING Shuju2, ZHANG Hongbo2
摘要: 为验证废旧轮胎碎片(tire derived aggregate, TDA)复合土作为锚拉式轻型挡土墙台背填料的可行性,使用竖向锚定板拉拔试验装置,开展20组室内拉拔模拟试验,研究不同竖向荷载和不同TDA质量分数时复合土中竖向锚定板极限承载性能。试验结果表明,TDA复合土竖向锚定板拉拔承载力-位移曲线可划分为线性递增阶段、塑性剪切破坏阶段及硬化阶段;锚定板极限承载力受竖向荷载与TDA质量分数(0~20%)的影响显著,其随竖向荷载的增大呈现非线性增大趋势,在低竖向荷载水平下,锚定板极限承载力的提升效果更明显。依据试验结果,构建适用于TDA复合土中竖向锚定板极限拉拔承载力理论模型,并对试验结果进行锚定板极限承载力的合理性验证。研究成果可为锚拉式轻型挡土墙的结构优化及工程应用提供依据。
中图分类号:
[1] YOON Y W, HEO S B, KIM K S. Geotechnical performance of waste tires for soil reinforcement from chamber tests[J]. Geotextiles and Geomembranes, 2006, 26(1): 100-107. [2] LIU L, CAI G, LIU S. Compression properties and micro-mechanisms of rubber-sand particle mixtures considering grain breakage[J]. Construction and Building Materials, 2018, 187: 1061-1072. [3] MORALES E, FILIATRAULT A, AREF A. Seismic floor isolation using recycled tires for essential buildings in developing countries[J]. Bulletin of Earthquake Engineering, 2018, 16(12): 6299-6333. [4] ROWE R K, DAVIS E H. The behavior of anchor plates in sand[J]. Géotechnique, 1982, 32(1):25-41. [5] 卢肇钧. 锚定板挡土结构[M]. 北京:中国铁道出版社,1989:10-57. LU Zhaojun. China anchor plate retaining structure[M]. Beijing: China Railway Publishing House, 1989:10-57. [6] NEELY W J, STUART J G, GRAHAM J. Failure loads of vertical anchor plates in sand[J]. International Journal of Rock Mechanics, 1974, 11(3):68-68. [7] KAME G S, DEWAIKAR D M, CHOUDHURY D. Pullout capacity of a vertical plate anchor embedded in cohesion-less soil[J]. Earth Science Research, 2012, 1(1):27-56. [8] MATIN J M, AMIRALI Z, NIMA M. Experimental evaluation of mechanically stabilized earth walls with recycled crumb rubbers[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(5):947-957. [9] 中华人民共和国交通部.公路土工试验规程:JTG 3430—2020 [S]. 北京:人民交通出版社,2020. [10] 南京水利科学研究院. 土工合成材料测试规程:SL235—2012[S]. 北京: 中国水利水电出版社,2012. [11] YUE H Y, ZHUANG P Z, ZHANG H B, et al. Failure and deformation mechanisms of vertical plate anchors subjected to lateral loading in sand[J]. International Journal of Geomechanics, 2020, 20(11): 04020210. [12] ANSARI Y, KOURETZIS G, SLOAN S W. Physical modelling of lateral sand-pipe interaction[J]. Géotechnique, 2021, 71(1):60-75. [13] DICKIN E A, LEUNG C F. Evaluation of design methods for vertical anchor plates[J]. Journal of Geotechnical Engineering, 1985, 111(4):500-520. [14] CHOUDHARY A K, DASH S K. Load-carrying mechanism of vertical plate anchors in sand[J]. International Journal of Geomechanics, 2017, 17(5):04016116. [15] NASER A S. Pullout capacity of block anchor in unsaturated sand[J]. Geotechnical Special Publication, 2006(147): 403-414. [16] SINGH A I. Soil engineering in theory and practice: book review[J]. Canadian Geotechnical, 1969, 6(2):225-226. [17] BOWLES J E. Foundation analysis and design[M]. 5th ed. New York: McGraw-Hill Education, 1996. [18] DAS B M, SIVAKUGAN N. Principles of foundation engineering[M]. 3rd ed. Orlando: Cole Engineering Division, 1984. [19] HANSEN J B. Resistance of rectangular anchor slab[M]. Lyngby: Danish Geotechnical Institute, 1966. |
[1] | 孙杰,张宏博,程钰,刘羽,张洪波,刘志鲲. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报 (工学版), 2023, 53(1): 49-59. |
[2] | 李晓亮,刘源,李玉鑫,江建宏,魏琨,张宏博. 砂土介质中废旧轮胎加筋条带拉拔特性[J]. 山东大学学报 (工学版), 2021, 51(4): 54-60. |
[3] | 宋修广, 杨鹤, 陈晓燕, 崔文杰, 岳红亚, 张恺, 田隽. 砂土中浅埋竖向锚定板极限承载力[J]. 山东大学学报 (工学版), 2021, 51(1): 24-31. |
|