您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (1): 24-31.doi: 10.6040/j.issn.1672-3961.0.2020.265

• 土木工程 • 上一篇    下一篇

砂土中浅埋竖向锚定板极限承载力

宋修广1(),杨鹤1,陈晓燕2,崔文杰1,岳红亚1,*(),张恺3,田隽4   

  1. 1. 山东大学齐鲁交通学院, 山东 济南 250002
    2. 济南市邢家渡引黄灌溉管理处, 山东 济南 250100
    3. 济南新旧动能转换先行区管理委员会建设管理部, 山东 济南 250101
    4. 山东高速股份有限公司投资部, 山东 济南 250101
  • 收稿日期:2020-07-03 出版日期:2021-02-20 发布日期:2021-03-01
  • 通讯作者: 岳红亚 E-mail:songxiuguang@sdu.edu.cn;yuehongya@mail.sdu.edu.cn
  • 作者简介:宋修广,1966年8月出生,工学博士,教授,博士生导师,山东省路基安全工程技术中心主任。主要从事道路病害机理及加固技术、工程灾害防治等领域的研究。主持国家及省部级项目10余项,企事业委托的重大工程项目20余项;获国家科技进步二等奖1项,省部级科技进步奖6项;发表学术论文100余篇(SCI及EI收录30余篇),获国家发明专利40余项;编写专著2部,国标1部,地方标准4部。宋修广(1966—),男,山东威海人,教授, 博士,主要研究方向为岩土支档结构, 地基加固技术. E-mail: songxiuguang@sdu.edu.cn

Ultimate uplift capacity of shallow vertical plate anchors in sand

Xiuguang SONG1(),He YANG1,Xiaoyan CHEN2,Wenjie CUI1,Hongya YUE1,*(),Kai ZHANG3,Juan TIAN4   

  1. 1. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China
    2. Jinan Xingjiadu Yellow River Diversion Irrigation Management Office, Jinan 250100, Shandong, China
    3. Construction Management Department, Jinan Pilot Zone Management Committee, Jinan 250101, Shandong, China
    4. Investment Department, Shandong Express Group Co., Ltd., Jinan 250101, Shandong, China
  • Received:2020-07-03 Online:2021-02-20 Published:2021-03-01
  • Contact: Hongya YUE E-mail:songxiuguang@sdu.edu.cn;yuehongya@mail.sdu.edu.cn

摘要:

研究砂土中浅埋竖向锚定板的极限承载力。采用粒子图像测速法(particle image velocimetry, PIV)开展模型试验研究, 得到砂土中竖向锚定板在水平拉拔过程中的土体变形和破坏机理。采用有限元极限分析给出不同土体参数和埋深比时砂土中浅埋竖向锚定板承载力上下限解。基于观测到的土体破坏形式, 依据极限平衡理论构建浅埋竖向锚定板极限承载力计算模型, 推导条形锚定板极限承载力计算公式, 进而通过引入形状系数建立矩形锚定板承载力计算方法。与极限分析上下限解对比显示, 该解接近于锚定板承载力下限解。采用51组模型试验数据, 对新建计算方法进行验证分析。对比结果显示, 理论预估高于试验数据约5%, 与试验数据吻合较好。研究结果的取得可对锚定板类支撑结构承载力设计计算提供一定的理论参考依据。

关键词: 竖向锚定板, 破坏机理, 承载力, 极限平衡, 有限元极限分析

Abstract:

This paper investigated the pullout behaviour of shallow vertical plate anchors in sand. Pull-out model tests were performed using the particle image velocimetry (PIV) technology, by which the soil deformation and failure mechanisms were observed. Then the ultimate bearing capacity of vertical plate anchors at various soil properties and cover depths was simulated using the finite element limit analysis software. According to the observed failure mechanism, a limit equilibrium solution was developed to calculate the bearing capacity of shallow strip plate anchors in sand, which was then extended for the prediction of the ultimate bearing capacity of rectangle plate anchors by introducing a shape coefficient. Results predicted by the new limit equilibrium solution showed close agreement with those by the lower bound limit analysis solution. The limit equilibrium solution was compared with 51 experimental data, which showed an average of 5% overestimation of the ultimate bearing capacity. This research can provide a theoretical method for the calculation of the ultimate bearing capacity of shallow plate anchors in sand.

Key words: vertical plate anchor, failure mechanism, capacity, limit equilibrium, finite element limit analysis

中图分类号: 

  • TU476

图1

试验装置示意图"

图2

典型竖向锚定板荷载-位移曲线"

图3

破坏时刻土体剪应变和累积速度矢量"

图4

计算模型对比验证"

图5

模型试验与弹塑性分析破坏模式对比"

图6

极限平衡力学模型"

图7

极限平衡解与上下限解对比"

表1

砂土中竖向锚定板试验汇总"

数据来源 试验数量 L/h 锚定板材料 密实度 H/h φ/(°) φin/(°) Cf
文献[29] 10 1 钢板/木板/混凝土/玻璃 压实处理 2 34/36 0.5φ/0 0.42
文献[30] 9 1 铝板 密砂/松砂 2~7 31/34/40.5 0.5φ 0.42/0.26
文献[17-19, 24] 15 1~5/条形 铝板 69.70% 1~8 41[14] 29 0.42
文献[24-25] 9 1~5 钢板 压实处理 1.7~7.7 43.6 10.6 0.42
文献[15] 6 1 钢板 30%/50%/75% 1~5 32/35/39 0.5 φ 0.42/0.26
本研究试验 2 条形 钢板 50%/83% 1~7 36.6/40.3 0.56~0.99 φ

图8

极限平衡解计算值与试验数据对比"

1 卢肇钧, 吴肖茗, 张肇伸. 锚定板挡土结构[J]. 岩土工程学报, 1981, 8 (3): 34- 40.
doi: 10.3321/j.issn:1000-4548.1981.03.005
LU Zhaojun , WU Xiaoming , ZHANG Zhaoshen . Ahchor slab structure retains earth fill[J]. Chinese Journal of Geotechnical Engineering, 1981, 8 (3): 34- 40.
doi: 10.3321/j.issn:1000-4548.1981.03.005
2 周应英. 锚定板抗拔力模型试验[J]. 水运工程, 1982, (11): 38- 39.
ZHOU Yingying . Model test of anchor plate pull-out force[J]. Waterway Engineering, 1982, (11): 38- 39.
3 王志谦. 悬锚式挡土墙结构的研究[D]. 西安: 长安大学, 2000.
WANG Zhiqian. Research of suspended-anchor retaining wall[D]. Xi'an: Chang'an University, 2000.
4 夏全平, 高江平, 陈鲁川, 等. 路基悬锚式挡土墙墙背土压力分布[J]. 公路交通科技, 2019, 36 (7): 47- 52.
XIA Quanping , GAO Jiangping , CHEN Luchuan , et al. Distribution of soil pressure on back of suspension anchor retaining wall[J]. Journal of Highway and Transportation Research and Development, 2019, 36 (7): 47- 52.
5 李善娇, 于德湖, 杨淑娟, 等. 悬锚式挡土墙墙后土压力特征有限元分析[J]. 低温建筑技术, 2017, 39 (11): 112- 114.
LI Shanjiao , YU Dehu , YANG Shujuan , et al. Finite element analysis of anchored retaining wall post-earth pressure characteristics[J]. Low Temperature Architecture Technology, 2017, 39 (11): 112- 114.
6 张宏博, 解全一, 岳红亚, 等. 预应力悬锚式挡土墙受力特性[J]. 山东大学学报(工学版), 2016, 46 (5): 95- 101.
ZHANG Hongbo , XIE Quanyi , YUE Hongya , et al. Mechanical performance of prestressed anchor plate retaining wall[J]. Journal of Shandong University (Engineering Science), 2016, 46 (5): 95- 101.
7 宋修广, 吴建清, 张宏博, 等. 压力分散型挡土墙土压力分布规律分析[J]. 科学技术与工程, 2014, 14 (20): 106- 110.
SONG Xiuguang , WU Jianqing , ZHANG Hongbo , et al. Analysis on earth pressure distribution of dispersed pressure retaining wall[J]. Science Technology and Engineering, 2014, 14 (20): 106- 110.
8 王红红. 压力分散型悬锚式挡土墙支护理论及应用研究[D]. 济南: 山东大学, 2011.
WANG Honghong. Support theory and application of pressure-dispersed anchor cantilever retaining wall[D]. Jinan: Shandong University, 2011.
9 薛志超, 宋修广, 陈宝强, 等. 压力分散型挡土墙支护高填土路基施工过程的受力特征[J]. 公路交通科技, 2013, 30 (4): 11- 16.
XUE Zhichao , SONG Xiuguang , CHEN Baoqiang , et al. Stress characteristics of pressure dispersive retaining wall for supporting high-filling embankment during construction[J]. Journal of Highway and Transportation Research and Development, 2013, 30 (4): 11- 16.
10 吴建清, 宋修广, 厉超, 等. 压力分散型挡土墙在施工期和运营期的受力特性分析[J]. 公路, 2014, (6): 36- 40.
WU Jianqing , SONG Xiuguang , LI Chao , et al. Analysis of mechanical properties for dispersed pressure retaining wall during construction and operations[J]. Highway, 2014, 2014 (6): 36- 40.
11 公路挡土墙设计与施工技术细则[M]. 北京: 人民交通出版社, 2008.
Technical guidelines for design and construction of highway retaining walls[M]. Beijing: China Communication Press, 2008.
12 DAS B, SHUKLA S. Earth anchors[M]. Florida, USA: J Ross Publishing, 2013.
13 SHAHRIAR A , ISLAM M , JADID R . Ultimate pullout capacity of vertical anchors in frictional soils[J]. International Journal of Geomechanics, 2020, 20 (2): 04019153.
14 MERIFIELD R , SLOAN S . The ultimate pullout capacity of anchors in frictional soils[J]. Canadian Geotechnical Journal, 2006, 43 (8): 852- 868.
15 CHOUDHARY A , DASH S . Load-carrying mechanism of vertical plate anchors in sand[J]. International Journal of Geomechanics, 2017, 17 (5): 04016116.
16 DICKIN E , LEUNG C . Evaluation of design methods for vertical anchor plates[J]. Journal of Geotechnical Engineering, 1985, 111 (4): 500- 520.
17 LIU J, HU H, YU L. Experimental study on the pull-out performance of strip plate anchors in sand[C]//Proceedings of the Twenty-third (2013) International Offshore and Polar Engineering Anchorage. Alaska, USA: International Society of Offshore and Polar Engineers, 2013: 616-623.
18 ANSARI Y , KOURETZIS G , SLOAN S . Development of a prototype for modelling soil-pipe interaction and its application for predicting the uplift resistance to buried pipe movements in sand[J]. Canadian Geotechnical Journal, 2018, 55 (10): 1451- 1474.
19 DICKON E , LEUNG C . Centrifugal model tests on vertical anchor plates[J]. Journal of Geotechnical Engineering, 1983, 109 (12): 1503- 1525.
20 LIU J , LIU M , ZHU Z . Sand deformation around an uplift plate anchor[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 138 (6): 728- 737.
21 WHITE D, TAKE W. GeoPIV: particle image velocimetry (PIV) software for use in geotechnical testing[M]. London, UK: University of Cambridge, 2002.
22 CHEUK C , WHITE D , BOLTON M . Uplift mechanisms of pipes buried in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134 (2): 154- 163.
23 BUTTERFIELD R , ANDRAWES K . On the angles of friction betweens sand and plane surfaces[J]. Journal of Terramechanics, 1972, 8 (4): 15- 23.
24 YUE H , ZHUANG P , ZHANG H , et al. Failure and deformation mechanisms of vertical plate anchors subjected to lateral loading in sand[J]. International Journal of Geomechanics and Engineering, 2020, 20 (11): 04020210.
25 MURRAY E , GEDDES J . Resistance of passive inclined anchors in cohesionless medium[J]. Geotechnique, 1989, 39 (3): 417- 431.
26 BOLTON M . The strength and dilatancy of sands[J]. Geotechnique, 1986, 36 (1): 65- 78.
27 KEAWSAWASVONG S , UKRITCHON B . Undrained stability of an active planar trapdoor in non-homogeneous clays with a linear increase of strength with depth[J]. Computers and Geotechnics, 2017, 81, 284- 293.
28 KUMAR J , SAHOO J . Upper bound solution for pullout capacity of vertical anchors in sand using finite elements and limit analysis[J]. International Journal of Geomechanics, 2012, 12 (3): 333- 337.
29 HUECKEL S. Model tests on anchoring capacity of vertical and inclined plates[C]//4th international conference on soil mechanics and foundations engineering. London, UK: Butterworth Scientific Publications, 1957: 203-206.
30 DAS B , SEELEY G , DAS S . Ultimate resistance of deep vertical anchor in sand[J]. Soils and Foundations, 1977, 17 (2): 52- 56.
31 OVESEN N, STROMANN H. Design method for vertical anchor slabs in sand[C]//Specialty Conference Performance of Earth and Earth-Supported Structures. Reston, USA: ASCE, 1972: 1481-1500.
[1] 于洋,石南,高磊,赵国浩,张峰. 预应力混凝土空心板梁抗剪承载力分析[J]. 山东大学学报 (工学版), 2023, 53(3): 88-95.
[2] 孙杰,张宏博,程钰,刘羽,张洪波,刘志鲲. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报 (工学版), 2023, 53(1): 49-59.
[3] 樊禹江,余滨杉,葛俊,黄欢欢,廖凯,丁佳雄,熊二刚. 新型装配式剪力墙摩擦抗剪机理[J]. 山东大学学报 (工学版), 2023, 53(1): 76-82.
[4] 谢印标,罗浩天,厉雅萌,武科,杨涛,李国栋,杨洪娜. 吸力式桶形基础在砂土中循环荷载下的承载力特性[J]. 山东大学学报 (工学版), 2022, 52(4): 151-156.
[5] 刘文杰,杨学英,张波,范志鑫,李成新,杨惠茗,李景龙. 含裂隙无腹筋梁的抗剪承载能力[J]. 山东大学学报 (工学版), 2022, 52(3): 42-50.
[6] 罗浩天,武科,厉雅萌,徐嘉祥,邢志豪. 波浪动荷载作用下吸力式桶形基础水平承载性能[J]. 山东大学学报 (工学版), 2021, 51(5): 100-106.
[7] 徐再根,刘正伟,刘文棚,周梦瑶,刘俊才,田利. 输电塔单双角钢过渡节点计算方法[J]. 山东大学学报 (工学版), 2021, 51(1): 87-93.
[8] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81-85.
[9] 田靖,李红伟,陈瑞,于文涛. 一种轴向电磁轴承的结构优化与有限元分析[J]. 山东大学学报(工学版), 2018, 48(2): 107-113.
[10] 李连祥,李先军. 不同扩径体数量、位置对支盘桩承载力的影响[J]. 山东大学学报(工学版), 2016, 46(5): 88-94.
[11] 张伟杰1,李术才1,魏久传2,张庆松1. 基于岩体极限平衡理论的煤层底板突水危险性预测[J]. 山东大学学报(工学版), 2013, 43(1): 86-91.
[12] 周海鹰1,李立新2,陈廷国1. 地铁隧道衬砌管片承载力试验及计算方法[J]. 山东大学学报(工学版), 2010, 40(4): 84-87.
[13] 管延华1,2,蒋斌松1,宋修广2,杨勇3. FRP-螺栓联合加固RC梁受剪承载能力试验研究[J]. 山东大学学报(工学版), 2010, 40(2): 82-87.
[14] 徐春一1, 2,刘明2*,王广林2. 蒸压粉煤灰多孔砖砌体偏心受压承载力试验研究[J]. 山东大学学报(工学版), 2010, 40(2): 71-77.
[15] 李海燕 刘端举 孙庆国 王怀新 刘玉萍. 千米深井软岩巷道破坏机理及支护技术研究[J]. 山东大学学报(工学版), 2009, 39(4): 112-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[2] 赵然杭,陈守煜 . 水资源数量与质量联合评价理论模型研究[J]. 山东大学学报(工学版), 2006, 36(3): 46 -50 .
[3] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[4] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[5] 宋青,李晓磊,张承进 . 基于瓶颈分析的邮政速递网络的优化[J]. 山东大学学报(工学版), 2007, 37(5): 29 -33 .
[6] 胡红春,吴耀华,廖莉 . 物流配送车辆线路的优化及其应用[J]. 山东大学学报(工学版), 2007, 37(4): 104 -107 .
[7] 穴洪涛,田国会,李晓磊,路飞 . QR Code在多种类物体识别与操作中的应用[J]. 山东大学学报(工学版), 2007, 37(6): 25 -30 .
[8] 马其华 王宜泰. 高密度电阻率法在煤矿界外巨空水探测上的应用[J]. 山东大学学报(工学版), 2009, 39(4): 107 -111 .
[9] 高明 史月涛 王妮妮 孙奉仲 平亚明. 侧风环境下自然通风湿式冷却塔周向进风变化规律[J]. 山东大学学报(工学版), 2009, 39(3): 154 -158 .
[10] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .