山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (6): 82-91.doi: 10.6040/j.issn.1672-3961.0.2022.295
• 土木工程 • 上一篇
李鸿钊1,张庆松1*,刘人太1,陈新1,辛勤2,石乐乐3
LI Hongzhao1, ZHANG Qingsong1*, LIU Rentai1, CHEN Xin1, XIN Qin2, SHI Lele3
摘要: 为研究浅埋地铁车站主体结构风险预报预警,建立基于实测数据与贝叶斯优化的随机森林模型(random forest model based on Bayesian optimization, BA-RF)机器学习的趋势分析方法,通过研究主体结构上方地表与建筑物沉降、竖井关键点位移、拱顶沉降等实时数据的趋势,预报未来关键位移短时期达到的最大值,并与控制值进行对比,当前序实测数据的时间δ为5、15、25 d时,平均绝对误差(yMAE)0.377、0.303和0.270,均方根误差(yRMSE)分别为0.853、0.463和0.509,实现了对结构风险的短期预报预警。研究结果表明:预报方法可以在前序实测数据宽度较小的情况下实现极小的偏移比与绝对偏移比,具备良好的预报效果,综合预报方法在实际监测过程中取得良好工程应用效果。
中图分类号:
[1] 陈春来, 赵城丽, 魏纲, 等. 基于Peck公式的双线盾构引起的土体沉降预测[J]. 岩土力学, 2014, 35(8): 2212-2218. CHEN Chunlai, ZHAO Chengli, WEI Gang, et al. Prediction of soil settlement induced by double-line shield tunnel based on Peck formula [J]. Rock and Soil Mechanics, 2014, 35(8): 2212-2218. [2] 高洪吉, 谢文达, 孙正阳, 等. 浅覆土盾构隧道施工引起地表沉降规律研究[J]. 科学技术与工程, 2020, 20(29): 12143-12149. GAO Hongji, XIE Wenda, SUN Zhengyang, et al. Analysis on surface subsidence by shallow buried shield tunneling[J]. Science Technology and Engineering, 2020, 20(29): 12143-12149. [3] 魏纲, 徐日庆. 软土隧道盾构法施工引起的纵向地面变形预测[J]. 岩土工程学报, 2005, 27(9): 1077-1081. WEI Gang, XU Riqing. Prediction of longitudinal ground deformation due to tunnel construction with shield in soft soil[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1077-1081. [4] 王建秀,付慧仙,朱雁飞, 等. 基于地层损失的盾构沉降计算方法研究进展[J]. 地下空间与工程学报, 2010, 6(1): 112-119 WANG Jianxiu, FU Huixian, ZHU Yanfei, et al. Advance in calculation of subsidence caused by shield tunnel based on strata loss[J]. Chinese Joumal of Underground Space and Engineering, 2010, 6(1):112-119. [5] 徐前卫, 朱合华, 廖少明, 等. 软土地层土压平衡盾构法施工的模型试验研究[J]. 岩土工程学报, 2007, 29(12): 1849-1857. XU Qianwei, ZHU Hehua, LIAO Shaoming, et al. Experimental study on EPB shield tunnel construction in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1849-1857. [6] 刘元雪, 施建勇, 许江, 等. 盾构法隧道施工数值模拟[J]. 岩土工程学报, 2004, 26(2): 239-243. LIU Yuanxue, SHI Jianyong, XU Jiang, et al. Numerical simulation of excavation of shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 239-243. [7] 朱才辉, 李宁, 柳厚祥, 等. 盾构施工工艺诱发地表沉降规律浅析[J]. 岩土力学, 2011, 32(1): 158-164. ZHU Caihui, LI Ning, LIU Houxiang, et al. Analysis of ground settlement induced by workmanship of shield tunnelling[J]. Rock and Soil Mechanics, 2011, 32(1): 158-164. [8] 向卫国, 徐玉胜. 隧道施工扰动下管线变形三维预测方法及应用[J]. 地下空间与工程学报, 2014, 10(4):920-925. XIANG Weiguo, XU Yusheng. 3D simulation prediction method for pipeline deflection under disturbing of tunneling and its application[J]. Chinese Joumal of Underground Space and Engineering, 2014, 10(4): 920-925. [9] 刘祥勇,张鑫,王军,等. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106. LIU Xiangyong, ZHANG Xin, WANG Jun, et al. Evaluation of shield tunneling-induced structural response[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 99-106. [10] CHEN R P, ZHANG P, WU H N, et al. Prediction of shield tunneling-induced ground settlement using machine learning techniques[J]. Frontiers of Structural and Civil Engineering, 2019, 13(6): 1363-1378. [11] 潘秋景, 李晓宙, 黄杉, 等. 机器学习在盾构隧道智能施工中的应用:综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30. PAN Qiujing, LI Xiaozhou, HUANG Shan, et al. Application of machine learning to intelligent shield tunnelling: review and prospects[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 10-30. [12] 孙钧, 袁金荣. 盾构施工扰动与地层移动及其智能神经网络预测[J]. 岩土工程学报, 2001, 23(3): 261-267. SUN Jun, YUAN Jinrong. Soil disturbance and ground movement under shield tunnelling and its intelligent prediction by using ANN technology[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 261-267. [13] ZHANG Wengang, KOK-KWANG Phoon. Editorial for advances and applications of deep learning and soft computing in geotechnical underground engineering[J]. Journal of Rock Mechanics and Geotechnical Engin-eering, 2022, 14(3): 671-673. [14] Phoon K K, ZHANG W. Future of machine learning in geotechnics[J]. Georisk: Assessment And Management of Risk for Engineered Systems and Geohazards, 2022: 1-16. [15] 仉文岗, 唐理斌, 陈福勇, 等. 基于4种超参数优化算法及随机森林模型预测TBM掘进速度[J]. 应用基础与工程科学学报, 2021, 29(5): 1186-1200. ZHANG Wengang, TANG Libin, CHEN Fuyong, et al. Prediction for TBM penetration rate using four hyperparameter optimization methods and random forest model[J]. Journal of Basic Science and Engineering, 2021, 29(5): 1186-1200. [16] 程功. 基于支持向量机的变形预测方法研究[D].昆明:昆明理工大学, 2010. CHENG Gong. Research on Deformation prediction method based on support vector machine[D]. Kunming:Kunming University of Science and Technology, 2010. [17] WU X G, JIANG Z, Zhang L M, et al. Dynamic risk analysis for adjacent buildings in tunneling environments: a Bayesian network-based approach[J]. Stochastic Environmental Research and Risk Assessment, 2015, 29(5): 1447-1461. [18] 王祥, 陈发达, 刘凯, 等. 基于随机森林-支持向量机隧道盾构引起建筑物沉降研究[J]. 土木工程与管理学报, 2021, 38(1): 86-92. WANG Xiang, CHEN Fada, LIU Kai, et al. Study on building settlement deformation caused by random forest based support vector machine tunnel shield[J]. Journal of Civil Engineering and Management, 2021, 38(1): 86-92. [19] ZHANG Wengang, ZHANG Runhong, WU Chongzhi, et al. State-of-the-art review of soft computing applications in underground excavations[J]. Geoscience Frontiers, 2020, 11(4): 1095-1106. [20] 杨文波,王宗学,田浩晟, 等. 基于PSO-SVM算法的层状软岩隧道大变形预测方法[J]. 隧道与地下工程灾害防治, 2022, 4(1): 29-37. YANG Wenbo, WANG Zongxue, TIAN Haocheng, et al. Prediction of shield tunneling induced ground movements: the state-of-the-art[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 29-37. [21] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. [22] BREIMAN L, CUTLER A. Manual-setting up, using, and understanding random forests V4.0.2003 [J]. CA, USA: McGraw Hill, 2002. [23] ZHOU P, LI Z, SNOWLING S, et al. A random forest model for inflow prediction at wastewater treatment plants [J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(10): 1781-1792. [24] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. ScikitHearn: machine learning in python [J]. The Journal of Machine Learning Research, 2011, 12: 2825-2830. |
[1] | 卞小曼,王小琴,蓝如师,刘振丙,罗笑南. 基于相似性保持和判别性分析的快速视频哈希算法[J]. 山东大学学报 (工学版), 2023, 53(6): 63-69. |
[2] | 袁高腾,周晓峰,郭宏乐. 基于特征选择算法的ECG信号分类[J]. 山东大学学报 (工学版), 2022, 52(4): 38-44. |
[3] | 聂秀山,马玉玲,乔慧妍,郭杰,崔超然,于志云,刘兴波,尹义龙. 任务粒度视角下的学生成绩预测研究综述[J]. 山东大学学报 (工学版), 2022, 52(2): 1-14. |
[4] | 孙鸿昌,周风余,单明珠,翟文文,牛兰强. 基于模式划分的空调能耗混合填补方法[J]. 山东大学学报 (工学版), 2022, 52(1): 9-18. |
[5] | 袁高腾,刘毅慧,黄伟,胡兵. 基于Gabor特征的乳腺肿瘤MR图像分类识别模型[J]. 山东大学学报 (工学版), 2020, 50(3): 15-23. |
[6] | 高铭壑,张莹,张蓉蓉,黄子豪,黄琳焱,李繁菀,张昕,王彦浩. 基于预测数据特征的空气质量预测方法[J]. 山东大学学报 (工学版), 2020, 50(2): 91-99. |
[7] | 张大鹏,刘雅军,张伟,沈芬,杨建盛. 基于异质集成学习的虚假评论检测[J]. 山东大学学报 (工学版), 2020, 50(2): 1-9. |
[8] | 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8. |
[9] | 李童,马然,郑鸿鹤,安平,胡翔宇. 基于视频统计特征的差错敏感度模型[J]. 山东大学学报 (工学版), 2019, 49(2): 116-121. |
[10] | 邹启杰,李昊宇,张汝波,裴腾达,刘艳. 自主驾驶的人机交互控制[J]. 山东大学学报 (工学版), 2019, 49(2): 23-33. |
[11] | 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报 (工学版), 2018, 48(5): 103-108. |
[12] | 刘洋,刘博,王峰. 基于Parameter Server框架的大数据挖掘优化算法[J]. 山东大学学报(工学版), 2017, 47(4): 1-6. |
[13] | 魏波,张文生,李元香,夏学文,吕敬钦. 一种选择特征的稀疏在线学习算法[J]. 山东大学学报(工学版), 2017, 47(1): 22-27. |
[14] | 周旺,张晨麟,吴建鑫. 一种基于Hartigan-Wong和Lloyd的定性平衡聚类算法[J]. 山东大学学报(工学版), 2016, 46(5): 37-44. |
[15] | 孟令恒,丁世飞. 基于单静态图像的深度感知模型[J]. 山东大学学报(工学版), 2016, 46(3): 37-43. |
|