您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (6): 70-81.doi: 10.6040/j.issn.1672-3961.0.2023.093

• 土木工程 • 上一篇    下一篇

粉质黏土地层桩侧劈裂注浆参数设计与效果评价

王钰鑫1(),吕思忠2,姚望2,林春金1,*(),张明1,李召峰1,张健1,王衍升1   

  1. 1. 山东大学岩土与结构工程研究中心,山东 济南 250061
    2. 山东高速股份有限公司,山东 济南 250014
  • 收稿日期:2023-05-14 出版日期:2023-12-20 发布日期:2023-12-19
  • 通讯作者: 林春金 E-mail:17854215993@163.com;linchunjin@sdu.edu.cn
  • 作者简介:王钰鑫(1997—),女,山东淄川人,硕士研究生,主要研究方向为在役桩基注浆加固试验与数值模拟。E-mail:17854215993@163.com
  • 基金资助:
    国家自然科学基金面上项目(52178338);山东省自然科学基金重点项目(ZR2020KE006);山东省重点研发计划(重大科技创新工程)项目(2021CXGC010301)

Parameter design and effect evaluation of pile side splitting grouting insilty clay stratum

Yuxin WANG1(),Sizhong LÜ2,Wang YAO2,Chunjin LIN1,*(),Ming ZHANG1,Zhaofeng LI1,Jian ZHANG1,Yansheng WANG1   

  1. 1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, Shandong, China
    2. Shangdong Hi-speed Company Limited, Jinan 250014, Shandong, China
  • Received:2023-05-14 Online:2023-12-20 Published:2023-12-19
  • Contact: Chunjin LIN E-mail:17854215993@163.com;linchunjin@sdu.edu.cn

摘要:

针对粉质黏土地层在役桩基础承载力不足问题,采用数值模拟和现场试验相结合的方法实现在役桩基注浆加固参数设计与加固效果评价。通过浆脉施加体积应变的方法建立注浆压力传递有限元模型,研究不同注浆工况下粉质黏土地层桩侧径向压力的分布规律,提出注浆参数设计方法。土压力随距离的衰减是非线性的,在一定的土体参数下注浆压力为2.0 MPa, 注浆孔与桩侧距离为0.5 m时,传递到桩侧的径向压力较大。以京台高速改扩建现场桩基为模型,绘制不同工况下桩基承载力提升幅度等值线图,注浆加固后桩基承载力提高了30.3%~89.4%,为在役桩基加固效果提供参考。

关键词: 粉质黏土, 桩侧注浆, 桩基承载力, 数值模拟, 加固效果评价

Abstract:

Aiming at the problem of insufficient bearing capacity of in-service pile foundation in silty clay stratum, numerical simulation and field test were used to realize the parameter design and reinforcement effect evaluation of in-service pile foundation grouting. The expanding form of split grouting vein was analyzed, the finite element model of grouting pressure transmission was established by applying volume strain to the vein, the distribution law of radial pressure on the pile side in silty clay stratum under different grouting conditions was studied, and the design method of grouting parameters was put forward. The attenuation of earth pressure with distance was nonlinear. Under certain soil parameters, when the grouting pressure was 2.0 MPa and the distance between grouting hole and pile side was 0.5 m, the radial pressure transmitted to pile side was larger. At the same time, taking the pile foundation in the reconstruction and expansion site of Beijing-Taibei Expressway as a model, the contour map of the increase range of pile foundation bearing capacity under different working conditions was drawn, and the pile foundation bearing capacity was increased by 30.3%-89.4% after grouting reinforcement, which provided reference for the reinforcement effect of in-service pile foundations.

Key words: silty clay, pile side grouting, pile bearing capacity, numerical simulation, reinforcement effect evaluation

中图分类号: 

  • TU43

图1

劈裂注浆加固在役桩基分析模型"

图2

模型应力云图"

表1

数值模拟参数设置"

模型组份 E/MPa ν ρ/(kg·m-3) c/kPa φ/(°)
粉质黏土 5~10 0.30 1 836 20~40 20
桩基 2×104 0.15
浆脉 1.24 0

表2

数值模拟工况设计"

工况 模型参数设计
E/MPa c/kPa s/m D/m L/m
1-1 5.0 20 0.50 1.0 1.00
1-2 7.5 20 0.50 1.0 1.00
1-3 10.0 20 0.50 1.0 1.00
1-4 10.0 30 0.50 1.0 1.00
1-5 10.0 40 0.50 1.0 1.00
1-6 10.0 20 0.75 1.0 1.00
1-7 10.0 20 1.00 1.0 1.00
1-8 10.0 20 0.50 0.8 1.00
1-9 10.0 20 0.50 1.2 1.00
1-10 10.0 20 0.50 1.0 0.75
1-11 10.0 20 0.50 1.0 0.50

图3

不同注浆压力下桩侧径向土压力分布及浆脉宽度"

图4

不同注浆压力下土压力传递比"

图5

不同E下桩侧径向土压力分布及浆脉宽度"

图6

不同E下土压力传递比"

图7

不同土体黏聚力下桩侧径向土压力分布及浆脉宽度"

图8

不同土体黏聚力下土压力传递比"

图9

桩侧径向土压力分布"

表3

不同注浆孔到桩侧的距离下浆脉的扩展宽度"

注浆压力/MPa 浆脉的扩展宽度/cm
注浆孔到桩侧的距离0.50 m 注浆孔到桩侧的距离0.75 m 注浆孔到桩侧的距离1.00 m
0.5 1.04 0.97 0.75
1.0 3.56 2.57 2.09
1.5 9.28 6.21 5.12
2.0 6.46 4.36 3.52

图10

不同开孔距离下土压力传递比"

表4

不同桩基直径下注浆作用传递到桩侧的径向压力"

注浆压力/MPa 径向压力/kPa
桩体直径0.8 m 桩体直径1.0 m 桩体直径1.2 m
0.5 19.04 18.70 18.50
1.0 46.46 45.66 45.20
1.5 70.78 70.31 70.40
2.0 95.24 95.92 95.26

图11

不同浆脉长度下桩侧径向土压力分布及浆脉宽度"

图12

不同浆脉长度下土压力传递比"

图13

注浆加固效果分区示意图"

图14

基于桩基加固效果的注浆参数设计"

表5

现场土层性质参数"

土层名称 深度/m ρ/(kg·m-3) c/kPa φ/(°) E /MPa
粉质黏土 2.1~4.6 1 907.3 20.3 23.6 4.5
粉土 4.6~7.2 2 784.6 14.6 16.8 10.0
粉砂 7.2~12.3
粉质黏土 12.3~16.5 2 570.4 17.6 20.3 8.9
粉质黏土 16.5~18.5 2 091.0 17.5 18.3 5.5
粉质黏土 18.5~29.6 1 866.6 18.9 24.7 6.1

图15

现场试验桩"

表6

注浆加固在役桩基承载力实测值与计算值"

桩号 注浆深度/m Δσh/kPa Δfs/kPa ΔQsu/kN Qu/kN 提升幅度/%
实测 计算 实测 计算
3# 6~8
8~10
10~15
15~22
6.2
16.4
26.8
36.9
12.3
21.0
31.8
37.4
1 836 8 600 8 436 30.3 27.8
5# 6~8
8~10
10~15
15~22
10.4
26.2
41.8
55.6
19.0
32.3
47.6
58.8
2 836 11 800 10 236 78.8 55.1
6# 6~8
8~10
10~15
15~22
18.5
45.2
70.4
95.3
27.3
43.4
65.6
80.6
3 895 12 500 11 395 89.4 72.6

图16

不同工况下桩基承载力提升幅度等值线图"

1 肖斌. 重塑粉质黏土的蠕变特性及蠕变模型研究[D]. 杭州: 浙江工业大学, 2017.
XIAO Bin. Research on creep properties and creep model of remodeled silty clay[D]. Hangzhou: Zhejiang Univ-ersity of Technology, 2017.
2 中华人民共和国住房和城乡建设部. 建筑地基处理技术规范: JGJ 79—2012[S]. 北京: 中国建筑工业出版社, 2012.
3 邹波, 何潇, 闫庆亮, 等. 高速公路改扩建梁桥新旧桩差异沉降控制标准研究[J]. 公路, 2019, 64 (4): 140- 143.
ZOU Bo , HE Xiao , YAN Qingliang , et al. Study on the control standard of differential settlement between new and old piles of beam bridges rebuilt and expanded on expressways[J]. Highway, 2019, 64 (4): 140- 143.
4 李术才, 陈红宾, 张晓, 等. 粉质黏土隧道超前支护效应试验研究[J]. 中南大学学报(自然科学版), 2019, 50 (4): 946- 956.
LI Shucai , CHEN Hongbin , ZHANG Xiao , et al. Experimental study on advance support effect of silty clay tunnel[J]. Journal of Central South University(Natural Science Edition), 2019, 50 (4): 946- 956.
5 赵立锋. 富水粉细砂地层盾构接收加固质量缺陷水平注浆补救技术探讨[J]. 现代隧道技术, 2022, 59 (增刊1): 972- 978.
ZHAO Lifeng . Discussion on remedial technology of horizontal grouting for shield acceptance and reinforcement quality defects in water-rich silty fine sand stratum[J]. Modern Tunnel Technology, 2022, 59 (Suppl.1): 972- 978.
6 路乔, 杨智超, 杨志全, 等. 考虑扩散路径的宾汉姆流体渗透注浆机制[J]. 岩土力学, 2022, 43 (2): 385- 394.
LU Qiao , YANG Zhichao , YANG Zhiquan , et al. Bingham fluid infiltration grouting mechanism considering diffusion path[J]. Geotechnical Mechanics, 2022, 43 (2): 385- 394.
7 陈昌富, 朱世民, 高傑, 等. 考虑注浆压力影响锚-土界面剪切蠕变Kriging模型[J]. 岩土工程学报, 2019, 41 (增刊1): 125- 128.
CHEN Changfu , ZHU Shimin , GAO Jie , et al. Kriging model of shear creep at anchor-soil interface considering the influence of grouting pressure[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (Suppl.1): 125- 128.
8 都君琪. 粉质黏土地层桩侧注浆对既有桩基承载力提升机理研究[D]. 济南: 山东大学, 2020.
DU Junqi. Study on the mechanism of increasing the bearing capacity of existing pile foundation by side grouting in silty clay stratum[D]. Jinan: Shandong University, 2020.
9 吴悦, 赵春风, 刘帆, 等. 不同注浆工况对砂土-混凝土接触面剪切特性影响[J]. 哈尔滨工业大学学报, 2021, 53 (5): 95- 103.
WU Yue , ZHAO Chunfeng , LIU Fan , et al. Effects of different grouting conditions on the shear characteristics of the sand-concrete interface[J]. Journal of Harbin Institute of Technology, 2021, 53 (5): 95- 103.
10 费逸, 赵春风, 王有宝, 等. 砂土-混凝土接触面注浆剪切试验研究[J]. 三峡大学学报(自然科学版), 2019, 41 (4): 46- 50.
FEI Yi , ZHAO Chunfeng , WANG Youbao , et al. Research on grouting shear test on sand-concrete contact surface[J]. Journal of Three Gorges University(Natural Science Edition), 2019, 41 (4): 46- 50.
11 陈卓, 孔超. 大断面地铁车站施工对邻近摩擦桩基桩侧摩阻力影响研究[J]. 现代隧道技术, 2019, 56 (6): 114- 120.
CHEN Zhuo , KONG Chao . Research on the influence of large-section subway station construction on the lateral friction resistance of adjacent friction pile foundations[J]. Modern Tunnel Technology, 2019, 56 (6): 114- 120.
12 万志辉, 戴国亮, 高鲁超, 等. 大直径后压浆灌注桩承载力和沉降的实用计算方法研究[J]. 岩土力学, 2020, 41 (8): 2746- 2755.
WAN Zhihui , DAI Guoliang , GAO Luchao , et al. Research on a practical calculation method for bearing capacity and settlement of large-diameter post-grouting cast-in-situ piles[J]. Geotechnical Mechanics, 2020, 41 (8): 2746- 2755.
13 FANG Kai , ZHAO Tongbin , TAN Yunliang , et al. Prediction of grouting penetration height along the shaft of base grouted pile[J]. Journal of Marine Science and Engineering, 2019, 7 (7): 212.
doi: 10.3390/jmse7070212
14 丁何杰. 高速公路改扩建既有桥梁桩基注浆加固机理及工程应用[D]. 泰安: 山东农业大学, 2021.
DING Hejie. Pile grouting reinforcement mechanism and engineering application of existing bridges in the reconstruction and expansion of expressways[D]. Taian: Shandong Agricultural University, 2021.
15 李康庄. 地铁隧道暗挖施工对临近桥梁桩基础的影响及其控制研究[D]. 兰州: 兰州交通大学, 2020.
LI Kangzhuang. Research on the influence of underground tunnel excavation construction on adjacent bridge pile foundations and its control[D]. Lanzhou: Lanzhou Jiaotong University, 2020.
16 孟凡伟, 蒋建平. 软土地区后注浆灌注桩侧阻力分布数值研究[J]. 燕山大学学报, 2020, 44 (2): 173- 181.
MENG Fanwei , JIANG Jianping . Numerical study on lateral resistance distribution of post-grouting cast-in-place piles in soft soil area[J]. Journal of Yanshan University, 2020, 44 (2): 173- 181.
17 WANG Qiuyu, QI Daokun, ZHOU Minming, et al. Physical and numerical modelling of grouting induced enlarged-base pile[C]// Proceedings of GeoShanghai 2018 International Conference: Advances in Soil Dynamics and Foundation Engineering. Singapore: Springer, 2018: 709-717.
18 施炎, 黄灿新, 王团乐, 等. 基于GIM的水利水电灌浆工程三维可视化分析方法与应用[J]. 长江科学院院报, 2022, 39 (8): 133- 139.
SHI Yan , HUANG Canxin , WANG Tuanle , et al. Research on three-dimensional visualization analysis method and application of water conservancy and hydropower grouting engineering based on GIM[J]. Proceedings of the Yangtze River Academy of Sciences, 2022, 39 (8): 133- 139.
19 周勇, 李召峰, 左志武, 等. 桩侧注浆提升粉质黏土地层既有桩基承载力试验研究[J]. 隧道与地下工程灾害防治, 2022, 4 (1): 38- 47.
ZHOU Yong , LI Zhaofeng , ZUO Zhiwu , et al. Eexperimental study of the bearing capacity of existing pile foundation in silty clay stratum promoted by pile side grouting[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4 (1): 38- 47.
20 张健, 李术才, 李召峰, 等. 全风化花岗岩地层单-双液浆加固试验研究[J]. 中南大学学报(自然科学版), 2018, 49 (12): 3051- 3059.
ZHANG Jian , LI Shucai , LI Zhaofeng , et al. Comparative study of reinforcement patterns between single-and double-fluidgrouting in fully-weathered granite[J]. Journal of Central South University(Science and Technology), 2018, 49 (12): 3051- 3059.
21 王荣鑫. 黏土地层劈裂注浆扩散特性研究[D]. 北京: 北京交通大学, 2020.
WANG Rongxin. Research on propagation characteristics of fracture grouting in clay formation[D]. Beijing: Beijing Jiaotong University, 2020.
22 化建新, 郑建国. 工程地质手册[M]. 北京: 中国建筑工业出版社, 2018.
HUA Jianxin , ZHENG Jianguo . Handbook of engineering geology[M]. Beijing: China Construction Industry Press, 2018.
23 于丽鹏. 基于FLAC3D模拟的土体弹性模量取值分析[J]. 水利与建筑工程学报, 2014, 12 (2): 162- 166.
YU Lipeng . The value analysis of soil elastic modulus based on FLAC3D simulation[J]. Chinese Journal of Hydraulic and Architectural Engineering, 2014, 12 (2): 162- 166.
24 欧阳进武, 张贵金, 刘杰. 劈裂灌浆扩散机理研究[J]. 岩土工程学报, 2018, 40 (7): 1328- 1335.
OUYANG Jinwu , ZHANG Guijin , LIU Jie . Study on diffusion mechanism of split grouting[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (7): 1328- 1335.
25 程少振, 陈铁林, 郭玮卿, 等. 土体劈裂注浆过程的数值模拟及浆脉形态影响因素分析[J]. 岩土工程学报, 2019, 41 (3): 484- 491.
CHENG Shaozhen , CHEN Tielin , GUO Weiqing , et al. Numerical simulation of soil splitting and grouting process and analysis of influencing factors of slurry vein shape[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (3): 484- 491.
26 周子龙, 赵云龙, 陈钊, 等. 基于颗粒流方法的土体压密注浆细观机理[J]. 中南大学学报(自然科学版), 2017, 48 (2): 465- 472.
ZHOU Zilong , ZHAO Yunlong , CHEN Zhao , et al. Micro-mechanism of soil compaction grouting based on particle flow method[J]. Journal of Central South University(Natural Science Edition), 2017, 48 (2): 465- 472.
27 秦楠, 叶飞, 韩兴博, 等. 基于分形理论的盾构壁后注浆压滤扩散模型[J]. 中南大学学报(自然科学版), 2021, 52 (12): 4484- 4491.
QIN Nan , YE Fei , HAN Xingbo , et al. Pressure filtration diffusion model of grouting behind shield wall based on fractal theory[J]. Journal of Central South University(Natural Science Edition), 2021, 52 (12): 4484- 4491.
28 张庆松, 张连震, 刘人太, 等. 基于"浆-土"界面应力耦合效应的劈裂注浆理论研究[J]. 岩土工程学报, 2016, 38 (2): 323- 330.
ZHANG Qingsong , ZHANG Lianzhen , LIU Rentai , et al. Theoretical study of split grouting based on the coupling effect of "grout soil" interface stress[J]. Journal of Geotechnical Engineering, 2016, 38 (2): 323- 330.
29 邓会元, 戴国亮, 竺明星, 等. 基于旁压试验的桩基承载力计算分析[J]. 岩土工程学报, 2021, 43 (增刊1): 19- 24.
DENG Huiyuan , DAI Guoliang , ZHU Mingxing , et al. Calculation and analysis of pile foundation bearing capacity based on side pressure test[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (Suppl.1): 19- 24.
30 莫品强, 刘尧, 高新慰, 等. 基于有限介质孔扩理论的桩基承载力预测方法研究[J]. 岩土工程技术, 2022, 36 (1): 1- 9.
MO Pinqiang , LIU Yao , GAO Xinwei , et al. Research on the prediction method of pile foundation bearing capacity based on finite medium hole expansion theory[J]. Geotechnical Engineering Technology, 2022, 36 (1): 1- 9.
31 张乾青, 张忠苗. 抗拔单桩受力性状的解析算法[J]. 岩土工程学报, 2011, 33 (增刊2): 308- 313.
ZHANG Qianqing , ZHANG Zhongmiao . Analytical algorithm for mechanical properties of uplift-resistant single piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (Suppl.2): 308- 313.
32 胡铠, 苏栋, 余中良, 等. 挤密效应对砂土中水平受荷桩承载特性的影响[J]. 岩土工程学报, 2019, 41 (增刊2): 213- 216.
HU Kai , SU Dong , YU Zhongliang , et al. Influence of compaction effect on bearing characteristics of horizontally loaded piles in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (Suppl. 2): 213- 216.
33 郭常乐. 基于浆液控制的桩基后注浆加固机理试验与数值模拟研究[D]. 泰安: 山东农业大学, 2022.
GUO Changle. Experiment and numerical simulation study of post-grouting reinforcement mechanism of pile foundation based on slurry control[D]. Taian: Shandong Agricultural University, 2022.
34 陈卓, 孔超. 大断面地铁车站施工对邻近摩擦桩基桩侧摩阻力影响研究[J]. 现代隧道技术, 2019, 56 (6): 114- 120.
CHEN Zhuo , KONG Chao . Study on the influence of the construction of large-section metro station on lateral friction resistance of adjacent pile foundation[J]. Modern Tunnelling Technology, 2019, 56 (6): 114- 120.
35 徐恒国. 粉质黏土注浆试验研究[J]. 石家庄铁道大学学报(自然科学版), 2013, 26 (增刊2): 268- 271.
XU Hengguo . Experimental study on grouting of silty clay[J]. Journal of Shijiazhuang Tiedao University(Natural Science Edition), 2013, 26 (Suppl.2): 268- 271.
[1] 张亚平,马唯婧,张宸硕,肖辉,张一鸣. 基于图像识别与CAE仿真技术的输变电塔一体化分析[J]. 山东大学学报 (工学版), 2023, 53(6): 122-130.
[2] 宋洋,罗志恒,张波,张宇,朱敏. 裂隙位置对类岩体短柱单轴压缩破坏形态影响[J]. 山东大学学报 (工学版), 2023, 53(5): 121-131.
[3] 王心泉,王智猛,牛犇,蒋恒,冯春. 8度地震烈度区新民隧道出口处边坡的稳定性[J]. 山东大学学报 (工学版), 2023, 53(3): 23-30.
[4] 郭鹏宁,刘巍,袁浩,冯硕,王延刚. 基于微元离散模型的螺旋挤压脱水效率分析[J]. 山东大学学报 (工学版), 2023, 53(1): 114-121.
[5] 牛犇,张新伟,周玉,李婧,徐兴全,张一鸣. 基于连续-非连续元降雨工况三维边坡稳定性分析[J]. 山东大学学报 (工学版), 2023, 53(1): 92-99.
[6] 孙杰,张宏博,程钰,刘羽,张洪波,刘志鲲. 基于TDA填料的废旧轮胎条带加筋砂土边坡承载特性[J]. 山东大学学报 (工学版), 2023, 53(1): 49-59.
[7] 张一鸣,李赟鹏,李婧,丛俊余. 孔隙裂隙介质多场耦合数值计算进展[J]. 山东大学学报 (工学版), 2022, 52(6): 63-78.
[8] 郑卫琴,许杰,孙杰,武科. 复合地层TBM隧道管片受力特征[J]. 山东大学学报 (工学版), 2022, 52(4): 210-213.
[9] 章清涛,刘晓威,高健,孙玉海,闫庆亮,刘源,王昊. 坡顶荷载作用下废旧轮胎条带加筋边坡承载特性[J]. 山东大学学报 (工学版), 2022, 52(3): 70-79.
[10] 刘舫辰,石岩,李元鲁,王湛,杜文静,季万祥. 用于燃煤电厂的低温省煤器前烟道流动及磨损特性[J]. 山东大学学报 (工学版), 2022, 52(3): 100-108.
[11] 郑俊峰,陈晓燕,马正,陈青. 土石坝加固拓宽坝体变形及稳定性分析[J]. 山东大学学报 (工学版), 2022, 52(1): 85-92.
[12] 田利,毕文哲,SIDDIQUISarim Saleem,刘凯悦. 建筑结构抗下击暴流研究综述[J]. 山东大学学报 (工学版), 2021, 51(5): 32-41.
[13] 卢光兆,周博,徐锋,上官伟,王刚,张书博. 浅埋偏压隧道进洞施工围岩稳定分析[J]. 山东大学学报 (工学版), 2021, 51(4): 61-70.
[14] 王春国. 复合地层全断面硬岩隧道掘进机下穿立交桥研究[J]. 山东大学学报 (工学版), 2021, 51(3): 45-51.
[15] 王春国. 硬岩隧道施工通风系统优化与抑尘效果评价[J]. 山东大学学报 (工学版), 2021, 51(3): 52-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谢楠 . 不确定非线性离散时滞系统的可靠保成本控制[J]. 山东大学学报(工学版), 2007, 37(4): 28 -33 .
[2] 吴世林 肖书安. 隧道地震成像理论与应用案例[J]. 山东大学学报(工学版), 2009, 39(5): 96 -100 .
[3] 彭丽芳 ,王仲顺,董文冉 . 市场均衡条件下供应链协作方式的对比[J]. 山东大学学报(工学版), 2006, 36(4): 65 -69 .
[4] 施来顺,董岩岩,李彦彦,李文静 . 二氧化氯催化氧化处理铬黑T模拟废水的实验[J]. 山东大学学报(工学版), 2007, 37(5): 113 -117 .
[5] 牛林 赵建国 李可军. 1000kV特高压交流输电线路工频磁场分析[J]. 山东大学学报(工学版), 2010, 40(1): 154 -158 .
[6] 李文义,许士国,王兴菊, . 河流水量组成分析与计算方法研究[J]. 山东大学学报(工学版), 2006, 36(2): 71 -74 .
[7] 尚芳 刘允刚 张承慧. 一类不确定非线性系统输出反馈扰动抑制[J]. 山东大学学报(工学版), 2010, 40(1): 19 -27 .
[8] 吴俊飞 林美 祝卫国 张艳飞. 含圆坑缺陷尿塔衬里开裂原因分析[J]. 山东大学学报(工学版), 2010, 40(1): 84 -86 .
[9] 周风余,吴爱国,李贻斌, . 110kV输电线路巡线机器人控制方法及实现[J]. 山东大学学报(工学版), 2007, 37(6): 31 -35 .
[10] . 二氧化氯处理南方微污染源水研究[J]. 山东大学学报(工学版), 2006, 36(3): 112 -115 .