山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (6): 26-34.doi: 10.6040/j.issn.1672-3961.0.2022.284
• 机器学习与数据挖掘 • 上一篇
张鑫,费可可
ZHANG Xin, FEI Keke
摘要: 最小二乘回归子空间聚类算法存在对数据中噪声敏感、模型对数据结构信息约束不充分、没有考虑数据非线性关系等问题。针对这些问题,提出一种基于log函数的改进算法。使用L-(2,log)范数代替Frobenius范数约束残差项,提高算法的鲁棒性;使用logdet范数代替Frobenius范数约束表达矩阵,加强表达矩阵的低秩性;利用核方法处理数据,增强算法对数据非线性关系的捕捉能力,进而提高聚类的准确率。分别在人脸、手写数字、物体3种类别的数据集上与多个经典聚类算法进行对比试验,试验结果表明,该算法在精准度、标准化互信息、纯度3个聚类评价指标上优于对比算法,具有良好的聚类效果。
中图分类号:
[1] CHENG B, YANG J, YAN S, et al. Learning with L1-graph for image analysis[J]. IEEE Transactions on Image Process, 2010, 19(4): 858-866. [2] KOMODAKIS N. Image completion using global optimization[C] //Proceedings of Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006: 442-452. [3] JI H, LIU C, SHEN Z, et al. Robust video denoising using low rank matrix completion[C] //Proceedings of Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010: 13-18. [4] VIDAL R, MA Y, SASTRY S. Generalized principal component analysis(GPCA)[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(12): 1945-1959. [5] GRUBER A, WEISS Y. Multibody factorization with uncertainty and missing data using the EM algorithm[C] //Proceedings of Computer Vision and Pattern Recognition. Washington, USA: IEEE, 2004: 707-714. [6] HO J, YANG M H, LIM J, et al. Clustering appearances of objects under varying illumination conditions[C] //Proceedings of Computer Vision and Pattern Recognition. Madison, USA: IEEE, 2003: 11-18. [7] SUI Y, WANG G, ZHANG L. Sparse subspace clustering via low-rank structure propagation[J]. Pattern Recognition, 2019, 95: 261-271. [8] DENG C, HE X, WU X, et al. Non-negative matrix factorization on manifold[C] //Proceedings of Eighth IEEE International Conference on Data Mining. Pisa, Italy: IEEE, 2008: 63-72. [9] ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781. [10] LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 35(1): 171-184. [11] WANG Y, ZHENG Y, WANG Z, et al. Time-weighted kernel-sparse-representation-based real-time nonlinear multimode process monitoring[J]. IEEE Transactions on Industrial Informatics, 2021, 18(4): 2411-2421. [12] CAI B, LU G F. Tensor subspace clustering using consensus tensor low-rank representation[J]. Information Sciences, 2022, 609: 46-59. [13] LIU M, WANG Y, SUN J, et al. Adaptive low-rank kernel block diagonal representation subspace clustering[J]. Applied Intelligence, 2022, 52(2): 2301-2316. [14] ZHANG G Y, CHEN X W, ZHOU Y R, et al. Kernelized multi-view subspace clustering via auto-weighted graph learning[J]. Applied Intelligence, 2022, 52(1): 716-731. [15] ABHADIOMHEN S E, WANG Z Y, SHEN X J. Coupled low rank representation and subspace clustering[J]. Applied Intelligence, 2022, 52(1): 530-546. [16] WANG S, CHEN Y, CEN Y, et al. Nonconvex low-rank and sparse tensor representation for multi-view subspace clustering[J]. Applied Intelligence, 2022, 52(13): 14651-14664. [17] WEI L, ZHANG F, CHEN Z, et al. Subspace clustering via adaptive least square regression with smooth affinities[J]. Knowledge-Based Systems, 2022, 239: 107950. [18] LU C Y, MIN H, ZHAO Z Q, et al. Robust and efficient subspace segmentation via least squares regression[C] //Proceedings of European Conference on Computer Vision. Florence, Italy: Springer, 2012: 347-360. [19] PENG C, CHENG Q. Discriminative ridge machine: a classifier for high-dimensional data or imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(6): 2595-2609. [20] YU Y F, XU G, JIANG M, et al. Joint transformation learning via the L2,1-norm metric for robust graph matching[J]. IEEE Transactions on Cybernetics, 2019, 51(2): 521-533. [21] MA Y, LI C, MEI X, et al. Robust sparse hyperspectral unmixing with 2,1 norm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 55(3): 1227-1239. [22] PENG C, ZHANG Y, CHEN Y, et al. Log-based sparse nonnegative matrix factorization for data representation[J]. Knowledge-Based Systems, 2022, 251(6): 109127. [23] PENG C, LIU Y, KANG K, et al. Hyperspectral image denoising using non-convex local low-rank and sparse separation with spatial-spectral total variation regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-17. [24] LIU Y, ZHANG Q, CHEN Y, et al. Hyperspectral image denoising with log-based robust PCA[C] //Proceedings of International Conference on Image Processing. Anchorage, USA: IEEE, 2021: 1634-1638. [25] PENG C, ZHANG Z, KANG Z, et al. Nonnegative matrix factorization with local similarity learning[J]. Information Sciences, 2021, 562: 325-346. [26] CHEN Y, GUO Y, WANG Y, et al. Denoising of hyperspectral images using nonconvex low rank matrix approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(9): 5366-5380. [27] TON K C, YUN S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems[J]. Pacific Journal of Optimization, 2010, 6(3): 615-640. [28] ZHOU T, YANG J, LIANG L. Enhanced sparse subspace clustering by manifold regularization for hyperspectral image[C] //Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science. New York, USA: ACM, 2019: 450-453. [29] KANG Z, LU X, LU Y, et al. Structure learning with similarity preserving[J]. Neural Networks, 2020, 129(8): 138-148. [30] KANG Z, PENG C, CHENG Q, et al. Structured graph learning for clustering and semi-supervised classification[J]. Pattern Recognition, 2021, 110: 107627. [31] PENG C, KANG Z, LI H, et al. Subspace clustering using log-determinant rank approximation[C] //Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2015: 925-934. [32] CANDES E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM(JACM), 2011, 58(3): 1-37. [33] LEE S, PARK Y T, et al. A novel feature selection method based on normalized mutual information[J]. Applied Intelligence, 2012, 37(1): 100-120. [34] KANG Z, PENG C, CHENG Q. Top-n recommender system via matrix completion[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Phoenix, USA: AAAI, 2016: 179-184. [35] PENG C, CHEN Y, KANG Z, et al. Robust principal component analysis: a factorization-based approach with linear complexity[J]. Information Sciences, 2019, 513: 581-599. [36] ZHOU P, LU C, FENG J, et al. Tensor low-rank representation for data recovery and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1718-1732. [37] LIU J, CHEN Y, ZHANG J, et al. Enhancing low-rank subspace clustering by manifold regularization[J]. IEEE Transactions on Image Processing, 2014, 23(9): 4022-4030. [38] LI C G, VIDAL R. Structured sparse subspace clustering: a unified optimization framework[C] //Proceedings of Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 277-286. [39] PATEL V M, VIDAL R. Kernel sparse subspace clustering[C] //Proceedings of IEEE International Conference on Image Processing. Paris, France: IEEE, 2014: 2849-2853. [40] KANG Z, LU Y, SU Y, et al. Similarity learning via kernel preserving embedding[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii, USA: AAAI, 2019: 4057-4064. [41] PENG C, CHENG J, CHENG Q. A supervised learning model for high-dimensional and large-scale data[J]. ACM Transactions on Intelligent Systems and Technology(TIST), 2016, 8(2): 1-23. |
[1] | 程业超,刘惊雷. 自适应图正则的单步子空间聚类[J]. 山东大学学报 (工学版), 2022, 52(2): 57-66. |
[2] | 解子奇,王立宏,李嫚. 块对角子空间聚类中成对约束的主动式学习[J]. 山东大学学报 (工学版), 2021, 51(2): 65-73. |
[3] | 向润,陈素芬,曾雪强. 基于多重多元回归的人脸年龄估计[J]. 山东大学学报 (工学版), 2019, 49(2): 54-60. |
[4] | 庞人铭,王波,叶昊,张海峰,李明亮. 基于PCA相似度和谱聚类相结合的高炉历史数据聚类[J]. 山东大学学报(工学版), 2017, 47(5): 143-149. |
[5] | 王海军,葛红娟,张圣燕. 基于L1范数和最小软阈值均方的目标跟踪算法[J]. 山东大学学报(工学版), 2016, 46(3): 14-22. |
[6] | 樊淑炎, 丁世飞. 基于多尺度的改进Graph cut算法[J]. 山东大学学报(工学版), 2016, 46(1): 28-33. |
[7] | 王兴良,王立宏*,李海军. 谱聚类中特征向量的Bagging选取方法[J]. 山东大学学报(工学版), 2013, 43(2): 35-41. |
[8] | 芮眀力,廖祖华,胡淼菡,陆金花. 关于T范数的广义模糊子坡(理想)[J]. 山东大学学报(工学版), 2010, 40(5): 28-33. |
[9] | 卜德云 张道强. 自适应谱聚类算法研究[J]. 山东大学学报(工学版), 2009, 39(5): 22-26. |
|