您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (6): 16-25.doi: 10.6040/j.issn.1672-3961.0.2023.127

• 机器学习与数据挖掘 • 上一篇    

基于提及图和显式路径的文档级关系抽取方法

郑泾飞,廖永新,王华珍,何霆*   

  1. 华侨大学计算机科学与技术学院, 福建 厦门 361021
  • 发布日期:2023-12-19
  • 作者简介:郑泾飞(1998— ),男,福建福州人,硕士研究生,主要研究方向为自然语言处理、知识图谱. E-mail: 21014083104@stu.hqu.edu.cn. *通信作者简介:何霆(1972— ),男,河南淮阳人,教授,博士生导师,博士,主要研究方向为服务计算、智能制造、大数据与商务智能. E-mail: heting@hqu.edu.cn
  • 基金资助:
    福建省社会科学基金基础研究资助项目(FJ2021B110)

Document-level relation extraction method based on mention graph and explicit path

ZHENG Jingfei, LIAO Yongxin, WANG Huazhen, HE Ting*   

  1. School of Computer Science and Technology, Huaqiao University, Xiamen 361021, Fujian, China
  • Published:2023-12-19

摘要: 为有效汇聚实体间信息,利用实体间路径信息判断语义关系,提出一种基于提及图和显式路径的文档级关系抽取方法。利用基于提及对类型的图构建方法,通过融合提及间天然存在的结构化信息,结合图注意力网络,实现实体间信息的汇聚;利用基于显式路径的关系推理方法,包括显式路径构建方法和启发式的路径特征融合方法两个子方法,通过显式方式构建关系推理路径,将推理路径分为句内推理路径、句间推理路径、直接推理路径,实现区分句内推理和句间推理,差异化融合路径特征,提高关系路径推理能力,增强关系抽取的准确度。在3个公开数据集上的对比试验表明,本方法在F1和Ign F1指标上较目前主流方法存在优越性,验证了基于提及图和显式路径的文档级关系抽取方法能够更有效地支持文档级关系抽取任务。

关键词: 文档级关系抽取, 图注意力网络, 显式路径, 提及图, 信息抽取

中图分类号: 

  • TP391
[1] 冯钧, 魏大保, 苏栋, 等. 文档级实体关系抽取方法研究综述[J]. 计算机科学, 2022, 49(10): 224-242. FENG Jun, WEI Dabao, SU Dong, et al. Survey of document-level entity relation extraction methods[J]. Computer Science, 2022, 49(10): 224-242.
[2] YAO Y, YE D, LI P, et al. DocRED: a large-scale document-level relation extraction dataset[C] //Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: ACL, 2019: 764-777.
[3] VERGA P, STRUBELL E, MCCALLUM A. Simultaneously self-attending to all mentions for full-abstract biological relation extraction[C] //Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. New Orleans, USA: ACL, 2018: 872-884.
[4] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C] //Proceedings of the 26th International Conference on Neural Information Processing Systems. Nevada, USA: MIT Press, 2013:3111-3119.
[5] PENNINGTON J, SOCHER R, MANNING C D. Glove: global vectors for word representation[C] /Proceedings of the 2014 conference on empirical methods in natural Ianguage processing. Stroudsburg, USA: ACL, 2014: 1532-1543.
[6] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C] //Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minneapolis, USA: ACL, 2019: 4171-4186.
[7] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C] //The 5th International Conference on Learning Representations. Toulon, France: ICLR, 2017: 1-14.
[8] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C] //The 6th International Conference on Learning Representations. Vancouver, Canada: ICLR, 2018: 1-12.
[9] GUO Z, ZHANG Y, LU W. Attention guided graph convolutional networks for relation extraction[C] //Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: ACL, 2019: 241-251.
[10] SAHU S, CHRISTOPOULOU E, MIWA M, et al. Inter-sentence relation extraction with document-level graph convolutional neural network[C] // Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Italy: ACL, 2019: 4309-4316.
[11] NAN G, GUO Z, SEKULIC I, et al. Reasoning with latent structure refinement for document-level relation extraction[C] //Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Seattle, USA: ACL, 2020: 1546-1557.
[12] ZENG S, XU R, CHANG B, et al. Double graph based reasoning for document-level relation extraction[C] //Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Punta Cana, Dominican: ACL, 2020: 1630-1640.
[13] PENG X, ZHANG C, XU K. Document-level relation extraction via subgraph reasoning[C] //Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence. Messe Wien, Austria: Morgan Kaufmann, 2022: 4331-4337.
[14] PARK S, YOON D, KIM H. Improving graph-based document-Level relation extraction model with novel graph structure[C] //Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Atlanta, USA: ACM, 2022: 4379-4383.
[15] XU W, CHEN K, ZHAO T. Discriminative reasoning for document-level relation extraction[C] //Findings of the Association for Computational Linguistics. Bangkok, Thailand: ACL, 2021: 1653-1663.
[16] XU W, CHEN K, MOU L, et al. Document-level relation extraction with sentences importance estimation and focusing[C] //Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Seattle, USA: ACL, 2022: 2920-2929.
[17] YU J, YANG D, TIAN S. Relation-specific attentions over entity mentions for enhanced document-Level relation extraction[C] //Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Seattle, USA: ACL, 2022: 1523-1529.
[18] CHRISTOPOULOU F, MIWA M, ANANIADOU S. Connecting the dots: document-level neural relation extraction with edge-oriented graphs[C] //Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. HongKong, China: ACL, 2019: 4925-4936.
[19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C] //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: MIT Press, 2017: 1-11.
[20] VRANDECIC D, KRÖTZSCH M. Wikidata: a free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57(10): 78-85.
[21] LI J, SUN Y, JOHNSON R J, et al. BioCreative V CDR task corpus: a resource for chemical disease relation extraction[EB/OL].(2016-05-08)[2023-06-12]. https://pubmed.ncbi.nlm.nih.gov/27161011/
[22] WU Y, LUO R, LEUNG H C M, et al. Renet: a deep learning approach for extracting gene-disease associations from literature[C] //Research in Computational Molecular Biology: 23rd Annual International Conference. Washington, USA: Springer International Publishing, 2019: 272-284.
[23] PIÑERO J, BRAVO À, QUERALT-ROSINACH N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants[J]. Nucleic Acids Research, 2017, 45(1): 833-839.
[24] TANG H, CAO Y, ZHANG Z, et al. Hin: hierarchical inference network for document-level relation extraction[C] //Pacific Asia Conference on Knowledge Discovery and Data Mining. Singapore: Springer, 2020: 197-209.
[25] ZENG S, WU Y, CHANG B. SIRE: Separate intra-and inter-sentential reasoning for document-level relation extraction[C] // Findings of the Association for Computational Linguistics. Bangkok, Thailand: ACL, 2021: 524-534.
[26] HUANG Q, ZHU S, FENG Y, et al. Three sentences are all you need: local path enhanced document relation extraction[C] // Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Bangkok, Thailand: ACL, 2021: 998-1004.
[27] LEE J, YOON W, KIM S, et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining[J]. Bioinformatics, 2020, 36(4): 1234-1240.
[1] 陈艳平,冯丽,秦永彬,黄瑞章. 一种基于深度神经网络的句法要素识别方法[J]. 山东大学学报 (工学版), 2020, 50(2): 44-49.
[2] 赵志宏1,2 ,黄蕾2 ,刘峰2 ,陈振宇1,2 .

Deep Web搜索技术进展综述

[J]. 山东大学学报(工学版), 2009, 39(2): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!