山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (4): 65-73.doi: 10.6040/j.issn.1672-3961.0.2023.025
摘要:
为提高转化型和稳定型轻度认知障碍(mild cognitive impairment, MCI)的分类精度, 利用阿尔茨海默病样本和正常对照组样本学习投影矩阵, 使用监督图正则化项优化样本的局部近邻关系, 基于投影矩阵对MCI样本进行空间变换, 提取对转化型和稳定型MCI具有判别性的特征。将提取的特征与mini精神状态检查评分, 以及与载脂蛋白E4等位基因信息融合, 通过信息互补增强特征的判别性。使用融合特征训练支持向量机分类器对转化型和稳定型MCI分类。在ADNI数据库上进行试验, 分类精度达到73.33%。与已有方法相比, 本研究提出方法的分类精度、敏感度和特异度显著提高。
中图分类号:
1 | 2021 Alzheimer's disease facts and figures[J]. Alzheimers & Dementia, 2021, 17(3): 327-406. |
2 |
MORRIS J C , CUMMINGS J . Mild cognitive impairment (MCI) represents early-stage Alzheimer's disease[J]. Journal of Alzheimer's Disease, 2005, 7 (3): 235- 239.
doi: 10.3233/JAD-2005-7306 |
3 |
PETERSEN R C , DOODY R , KURZ A , et al. Current concepts in mild cognitive impairment[J]. Archives of Neurology, 2001, 58 (12): 1985- 1992.
doi: 10.1001/archneur.58.12.1985 |
4 | WARD A , TARDIFF S , DYE C , et al. Rate of conversion from prodromal Alzheimer's disease to Alzheimer's dementia: a systematic review of the literature[J]. Dementia & Geriatric Cognitive Disorders Extra, 2013, 3 (1): 320- 332. |
5 |
RATHORE S , HABES M , IFTIKHAR M A , et al. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages[J]. NeuroImage, 2017, 155, 530- 548.
doi: 10.1016/j.neuroimage.2017.03.057 |
6 | ZHENG W , YAO Z , XIE Y , et al. Identification of Alzheimer's disease and mild cognitive impairment using networks constructed based on multiple morphological brain features[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2018, 3 (10): 887- 897. |
7 | YANG D , MASURKAR A . Early-stage MRI volumetric differences in white matter hyperintensity and temporal lobe volumes between autopsy-confirmed Alzheimer's disease, cerebral small vessel disease, and mixed pathologies[J]. Dementia and Geriatric Cognitive Disorders Extra, 2022, (12): 69- 75. |
8 |
陈全, 彭永, 甘棋心, 等. 阿尔茨海默病的影像学研究进展[J]. 国际神经病学神经外科学杂志, 2022, 49 (5): 60- 66.
doi: 10.16636/j.cnki.jinn.1673-2642.2022.05.013 |
CHEN Quan , PENG Yong , GAN Qixin , et al. Research advances in the imaging findings of Alzheimer's disease[J]. Journal of International Neurology and Neurosurgery, 2022, 49 (5): 60- 66.
doi: 10.16636/j.cnki.jinn.1673-2642.2022.05.013 |
|
9 | 张月芳, 邓红霞, 呼春香, 等. 融合残差块注意力机制和生成对抗网络的海马体分割[J]. 山东大学学报(工学版), 2020, 50 (6): 76- 81. |
ZHANG Yuefang , DENG Hongxia , HU Chunxiang , et al. Hippocampal segmentation combining residual attention mechanism and generative adversarial networks[J]. Journal of Shandong University(Engineering Science), 2020, 50 (6): 76- 81. | |
10 |
MORADI E , PEPE A , GASER C , et al. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects[J]. NeuroImage, 2015, 104, 398- 412.
doi: 10.1016/j.neuroimage.2014.10.002 |
11 | 接标, 张道强. 面向脑网络的新型图核及其在MCI分类上的应用[J]. 计算机学报, 2016, 39 (8): 1667- 1680. |
JIE Biao , ZHANG Daoqiang . The novel graph kernel for brain networks with application to MCI classification[J]. Chinese Journal of Computers, 2016, 39 (8): 1667- 1680. | |
12 |
姜世香, 杨艳杰. 轻度认知障碍的发展演化及识别诊断[J]. 中国临床心理学杂志, 2017, 25 (1): 88- 91.
doi: 10.16128/j.cnki.1005-3611.2017.01.020 |
JIANG Shixiang , YANG Yanjie . The development and the diagnosis of mild cognitive impairment[J]. Chinese Journal of Clinical Psychology, 2017, 25 (1): 88- 91.
doi: 10.16128/j.cnki.1005-3611.2017.01.020 |
|
13 |
TONG T , GAO Q , GUERRERO R , et al. A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer's disease[J]. IEEE Transactions on Biomedical Engineering, 2017, 64 (1): 155- 165.
doi: 10.1109/TBME.2016.2549363 |
14 |
FAN Y , BATMANGHELICH N , CLARK C M , et al. Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline[J]. NeuroImage, 2008, 39 (4): 1731- 1743.
doi: 10.1016/j.neuroimage.2007.10.031 |
15 | YOUNG J , MODAT M , CARDOSO M J , et al. Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment[J]. NeuroImage: Clinical, 2013, (2): 735- 745. |
16 | BRON E E , KLEIN S , PAPMA J M , et al. Cross-cohort generalizability of deep and conventional machine learning for mri-based diagnosis and prediction of Alzheimer's disease[J]. NeuroImage: Clinical, 2021, 102712. |
17 | LIN W , GAO Q , YUAN J , et al. Predicting Alzheimer's disease conversion from mild cognitive impairment using an extreme learning machine-based grading method with multimodal data[J]. Frontiers in Aging Neuroscience, 2020, (12): 1- 9. |
18 | SHEN H T , ZHU X , ZHANG Z , et al. Heterogeneous data fusion for predicting mild cognitive impairment conversion[J]. Information Fusion, 2021, 66 (1): 54- 63. |
19 | YE D H, POHL K M, DAVATZIKOS C. Semi-supervised pattern classification: application to structural MRI of Alzheimer's disease[C]//IEEE International Workshop on Pattern Recognition in Neuroimaging. Seoul, Korea: IEEE, 2011: 1-4. |
20 |
FILIPOVYCH R , DAVATZIKOS C . Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)[J]. NeuroImage, 2011, 55 (3): 1109- 1119.
doi: 10.1016/j.neuroimage.2010.12.066 |
21 | BATMANGHELICH K N, YE D H, POHL K M, et al. Disease classification and prediction via semi-supervised dimensionality reduction[C]//IEEE International Symposium on Biomedical Imaging. Chicago, USA: IEEE, 2011: 1086-1090. |
22 |
CHENG B , LIU M , ZHANG D , et al. Domain transfer learning for MCI conversion prediction[J]. IEEE Transactions on Biomedical Engineering, 2015, 62 (7): 1805- 1817.
doi: 10.1109/TBME.2015.2404809 |
23 |
COUPÉ P , ESKILDSEN S F , MANJÓN J V , et al. Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease[J]. NeuroImage: Clinical, 2012, 1 (1): 141- 152.
doi: 10.1016/j.nicl.2012.10.002 |
24 | LI Y , FANG Y , ZHANG H , et al. Self-weighting grading biomarker based on graph-guided information propagation for the prediction of mild cognitive impairment conversion[J]. IEEE Access, 2019, (7): 116632- 116642. |
25 | LIU X , TOSUN D , WEINER M W , et al. Locally linear embedding (LLE) for MRI based Alzheimer's disease classification[J]. NeuroImage, 2013, (83): 148- 157. |
26 |
ZHU X , SUK H I , LEE S W , et al. Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification[J]. IEEE Transactions on Biomedical Engineering, 2016, 63 (3): 607- 618.
doi: 10.1109/TBME.2015.2466616 |
27 | LI Y , FANG Y , WANG J , et al. Biomarker extraction based on subspace learning for the prediction of mild cognitive impairment conversion[J]. BioMed Research International, 2021, 5531940. |
28 |
MWANGI B , TIAN T S , SOARES J C . A review of feature reduction techniques in neuroimaging[J]. Neuroinformatics, 2014, 12 (2): 229- 244.
doi: 10.1007/s12021-013-9204-3 |
29 |
FOLSTEIN M F , FOLSTEIN S E , MCHUGH P R . "Mini-mental state": a practical method for grading the cognitive state of patients for the clinician[J]. Journal of Psychiatric Research, 1975, 12 (3): 189- 198.
doi: 10.1016/0022-3956(75)90026-6 |
30 | LEHTOVIRTA M , SOININEN H , LAAKSO M P , et al. SPECT and MRI analysis in Alzheimer's disease: relation to apolipoprotein E ε4 allele[J]. Journal of Neurology Neurosurgery & Psychiatry, 1996, 60 (6): 644- 649. |
31 |
VERGHESE P B , CASTELLANO J M , HOLTZMAN D M . Apolipoprotein E in Alzheimer's disease and other neurological disorders[J]. Lancet Neurology, 2011, 10 (3): 241- 252.
doi: 10.1016/S1474-4422(10)70325-2 |
32 |
HALL A , MUÑOZ-RUIZ M , MATTILA J , et al. Generalizability of the disease state index prediction model for identifying patients progressing from mild cognitive impairment to Alzheimer's disease[J]. Journal of Alzheimer's Disease, 2015, 44 (1): 79- 92.
doi: 10.3233/JAD-140942 |
33 | 杨小惠, 吴芹, 石京山. ApoE4在阿尔茨海默病中的研究进展[J]. 临床与病理杂志, 2017, 37 (3): 627- 631. |
YANG Xiaohui , WU Qin , SHI Jingshan . Research progress of apolipoprotein E4 in Alzheimer's disease[J]. Journal of Clinical and Pathological Research, 2017, 37 (3): 627- 631. | |
34 | MORRIS J C . The clinical dementia rating (CDR): current version and scoring rules[J]. Neurology, 1993, 43 (11): 2412- 2414. |
35 |
FISCHL B , SERENO M I , DALE A M . Cortical surface-based analysis. Ⅱ: Inflation, flattening, and a surface-based coordinate system[J]. NeuroImage, 1999, 9 (2): 195- 207.
doi: 10.1006/nimg.1998.0396 |
36 |
DALE A M , FISCHL B , SERENO M I . Cortical surface-based analysis. I. Segmentation and surface reconstruction[J]. NeuroImage, 1999, 9 (2): 179- 194.
doi: 10.1006/nimg.1998.0395 |
37 |
FISCHL B , LIU A , DALE A M . Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex[J]. IEEE Transactions on Medical Imaging, 2001, 20 (1): 70- 80.
doi: 10.1109/42.906426 |
38 | FISCHL B , DALE A M . Measuring the thickness of the human cerebral cortex from magnetic resonance images[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97 (20): 11050- 11055. |
39 | TZOURIO-MAZOYER N , LANDEAU B , PAPATHANASSIOU D , et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. NeuroImage, 2002, 15 (1): 273- 289. |
40 | FAN R E , CHANG K W , HSIEH C J , et al. LIBLINEAR: a library for large linear classification[J]. Journal of Machine Learning Research, 2008, 9 (9): 1871- 1874. |
41 | CHANG C C , LIN C J . LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2 (3): 27. |
42 | ZHOU Q , GORYAWALA M , CABRERIZO M , et al. An optimal decisional space for the classification of Alzheimer's disease and mild cognitive impairment[J]. IEEE Transactions on Biomedical Engineering, 2014, 61 (8): 2245- 2253. |
[1] | 于泓,杜娟,魏琳,张利. 计及行为特征的市场化用户电量数据拟合方法[J]. 山东大学学报 (工学版), 2023, 53(4): 113-119. |
[2] | 张喜龙,韩萌,陈志强,武红鑫,李慕航. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92. |
[3] | 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10. |
[4] | 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88. |
[5] | 孙志巍,宋明阳,潘泽华,景丽萍. 上下文感知的判别式主题模型[J]. 山东大学学报 (工学版), 2022, 52(4): 131-138. |
[6] | 王丽,于明仟,刘文鹏,周瑜,郑蕊蕊,贺建军. 面向类不平衡数据的K近邻偏标记学习算法[J]. 山东大学学报 (工学版), 2022, 52(3): 18-24. |
[7] | 张学思,张婷,刘兆英,江天鹏. 基于轻量型卷积神经网络的海面红外显著性目标检测方法[J]. 山东大学学报 (工学版), 2022, 52(2): 41-49. |
[8] | 龚楷伦,翟婷婷,唐鸿成. 一种面向多标签分类的在线主动学习算法[J]. 山东大学学报 (工学版), 2022, 52(2): 80-88. |
[9] | 曹春红,段鸿轩,曹玲,张乐乐,胡凯,肖芬. 基于多级特征级联的遥感图像实时语义分割[J]. 山东大学学报 (工学版), 2021, 51(2): 19-25. |
[10] | 张沁洋,李旭,姚春龙,李长吾. 结合句法依存信息的方面级情感分类[J]. 山东大学学报 (工学版), 2021, 51(2): 83-89. |
[11] | 肖卓宇,何锫,陈果,徐运标,郭杰. 带特征指标约束描述的设计模式分类挖掘[J]. 山东大学学报 (工学版), 2020, 50(6): 48-58. |
[12] | 马常霞,张晨. 中文对话理解中基于预训练的意图分类和槽填充联合模型[J]. 山东大学学报 (工学版), 2020, 50(6): 68-75. |
[13] | 赵宁宁,唐雪嵩,赵鸣博. 基于卷积神经网络的深度线段分类算法[J]. 山东大学学报 (工学版), 2020, 50(4): 22-27. |
[14] | 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33. |
[15] | 冯超,徐鲲鹏,陈黎飞. 符号序列的LDA主题特征表示方法[J]. 山东大学学报 (工学版), 2020, 50(2): 60-65. |
|