您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (4): 65-73.doi: 10.6040/j.issn.1672-3961.0.2023.025

• 机器学习与数据挖掘 • 上一篇    下一篇

基于监督图正则化和信息融合的轻度认知障碍分类方法

李颖1(),王建坤2,*()   

  1. 1. 山东管理学院信息工程学院, 山东 济南 250357
    2. 山东省大数据中心, 山东 济南 250011
  • 收稿日期:2023-02-07 出版日期:2023-08-20 发布日期:2023-08-18
  • 通讯作者: 王建坤 E-mail:liying200606@163.com;wangjk0203@163.com
  • 作者简介:李颖(1986—),女,山东济南人,副教授,博士,主要研究方向为机器学习、医学图像处理。E-mail: liying200606@163.com
  • 基金资助:
    2022年度济南市哲学社会科学研究课题(JNSK22B44)

The classification of mild cognitive impairment based on supervised graph regularization and information fusion

Ying LI1(),Jiankun WANG2,*()   

  1. 1. School of Information Engineering, Shandong Management University, Jinan 250357, Shandong, China
    2. Shandong Big Data Center, Jinan 250011, Shandong, China
  • Received:2023-02-07 Online:2023-08-20 Published:2023-08-18
  • Contact: Jiankun WANG E-mail:liying200606@163.com;wangjk0203@163.com

摘要:

为提高转化型和稳定型轻度认知障碍(mild cognitive impairment, MCI)的分类精度, 利用阿尔茨海默病样本和正常对照组样本学习投影矩阵, 使用监督图正则化项优化样本的局部近邻关系, 基于投影矩阵对MCI样本进行空间变换, 提取对转化型和稳定型MCI具有判别性的特征。将提取的特征与mini精神状态检查评分, 以及与载脂蛋白E4等位基因信息融合, 通过信息互补增强特征的判别性。使用融合特征训练支持向量机分类器对转化型和稳定型MCI分类。在ADNI数据库上进行试验, 分类精度达到73.33%。与已有方法相比, 本研究提出方法的分类精度、敏感度和特异度显著提高。

关键词: 轻度认知障碍, 监督图正则化, 信息融合, 特征提取, 分类

Abstract:

To precisely distinguish progressive and stable mild cognitive impairment (MCI). The projection matrix was learned from Alzheimer′s disease samples and normal control samples. The supervised graph regularization was used to optimize the local nearest neighbor relationship of the samples. Based on the projection matrix, the spatial transformation of the MCI samples was carried out to extract the discriminative features of progressive and stable MCI. The proposed features were fused with the scores of Mini-Mental State Examination and apolipoprotein E4. The SVM classifier was trained using the fused features for the MCI classification. The experiments were conduct on the Alzheimer′s Disease Neuroimaging Initiative (ADNI) database. The classification accuracy reached to 73.33%. Compared with the existing approaches, the proposed method significantly improved the classification accuracy, sensitivity and specificity.

Key words: mild cognitive impairment, supervised graph regularization, information fusion, feature extraction, classification

中图分类号: 

  • TP391

图1

提出方法的框架"

表1

研究对象的人口统计学及临床信息"

样本 人数 年龄/岁临床痴呆评分[34]mini精神状态检查评分
平均 标准差 均值 标准差
NC 78 87 76.40 5.37 0 29.19 0.96
sMCI 63 32 74.94 7.32 0.5 27.69 1.73
pMCI 73 53 73.40 9.25 0.5 26.49 1.70
AD 72 70 76.10 7.51 0.5/1 23.20 2.01

表2

SGRIP特征的分类性能验证"

特征提取方式 分类精度/% 敏感度/% 特异度/% Auc
CT特征+CV特征+无监督图[27] 69.37 75.39 61.23 0.695 1
CV特征+无监督图 67.21 73.01 59.46 0.702 8
CV特征+有监督图+自适应近邻结构优化 69.15 77.81 57.57 0.709 2
CV特征+有监督图+自适应近邻结构优化+特征选择(SGRIP特征) 70.24 78.76 58.64 0.700 9

表3

融合特征的分类性能验证"

特征 分类精度/% 敏感度/% 特异度/% Auc
MMSE 62.44 53.27 74.65 0.658 3
APOE4 60.67 63.50 56.84 0.417 2
MMSE-APOE4 59.17 57.78 61.15 0.685 0
SGRIP特征 70.24 78.76 58.64 0.700 9
SGRIP特征-MMSE 71.99 78.23 63.63 0.733 3
SGRIP特征-APOE4 69.83 77.95 59.03 0.721 1
SGRIP特征-MMSE-APOE4 73.33 78.84 65.93 0.761 2

表4

与现有方法的对比"

特征 分类器 分类精度/% 敏感度/% 特异度/% Auc
MFN特征[6] SVM(高斯核) 65.61 70.63 58.95 0.667 0
分级生物特征[13] SVM(线性核) 67.43 70.04 63.96 0.698 1
基于子空间学习的生物特征[27] SVM(线性核) 69.37 75.39 61.23 0.695 1
SGRIP特征-MMSE-APOE4 SVM(高斯核) 72.79 81.71 60.88 0.754 2
SGRIP特征-MMSE-APOE4 SVM(线性核) 73.33 78.84 65.93 0.761 2

图2

SGRIP特征空间中MCI样本可视化"

1 2021 Alzheimer's disease facts and figures[J]. Alzheimers & Dementia, 2021, 17(3): 327-406.
2 MORRIS J C , CUMMINGS J . Mild cognitive impairment (MCI) represents early-stage Alzheimer's disease[J]. Journal of Alzheimer's Disease, 2005, 7 (3): 235- 239.
doi: 10.3233/JAD-2005-7306
3 PETERSEN R C , DOODY R , KURZ A , et al. Current concepts in mild cognitive impairment[J]. Archives of Neurology, 2001, 58 (12): 1985- 1992.
doi: 10.1001/archneur.58.12.1985
4 WARD A , TARDIFF S , DYE C , et al. Rate of conversion from prodromal Alzheimer's disease to Alzheimer's dementia: a systematic review of the literature[J]. Dementia & Geriatric Cognitive Disorders Extra, 2013, 3 (1): 320- 332.
5 RATHORE S , HABES M , IFTIKHAR M A , et al. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages[J]. NeuroImage, 2017, 155, 530- 548.
doi: 10.1016/j.neuroimage.2017.03.057
6 ZHENG W , YAO Z , XIE Y , et al. Identification of Alzheimer's disease and mild cognitive impairment using networks constructed based on multiple morphological brain features[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2018, 3 (10): 887- 897.
7 YANG D , MASURKAR A . Early-stage MRI volumetric differences in white matter hyperintensity and temporal lobe volumes between autopsy-confirmed Alzheimer's disease, cerebral small vessel disease, and mixed pathologies[J]. Dementia and Geriatric Cognitive Disorders Extra, 2022, (12): 69- 75.
8 陈全, 彭永, 甘棋心, 等. 阿尔茨海默病的影像学研究进展[J]. 国际神经病学神经外科学杂志, 2022, 49 (5): 60- 66.
doi: 10.16636/j.cnki.jinn.1673-2642.2022.05.013
CHEN Quan , PENG Yong , GAN Qixin , et al. Research advances in the imaging findings of Alzheimer's disease[J]. Journal of International Neurology and Neurosurgery, 2022, 49 (5): 60- 66.
doi: 10.16636/j.cnki.jinn.1673-2642.2022.05.013
9 张月芳, 邓红霞, 呼春香, 等. 融合残差块注意力机制和生成对抗网络的海马体分割[J]. 山东大学学报(工学版), 2020, 50 (6): 76- 81.
ZHANG Yuefang , DENG Hongxia , HU Chunxiang , et al. Hippocampal segmentation combining residual attention mechanism and generative adversarial networks[J]. Journal of Shandong University(Engineering Science), 2020, 50 (6): 76- 81.
10 MORADI E , PEPE A , GASER C , et al. Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects[J]. NeuroImage, 2015, 104, 398- 412.
doi: 10.1016/j.neuroimage.2014.10.002
11 接标, 张道强. 面向脑网络的新型图核及其在MCI分类上的应用[J]. 计算机学报, 2016, 39 (8): 1667- 1680.
JIE Biao , ZHANG Daoqiang . The novel graph kernel for brain networks with application to MCI classification[J]. Chinese Journal of Computers, 2016, 39 (8): 1667- 1680.
12 姜世香, 杨艳杰. 轻度认知障碍的发展演化及识别诊断[J]. 中国临床心理学杂志, 2017, 25 (1): 88- 91.
doi: 10.16128/j.cnki.1005-3611.2017.01.020
JIANG Shixiang , YANG Yanjie . The development and the diagnosis of mild cognitive impairment[J]. Chinese Journal of Clinical Psychology, 2017, 25 (1): 88- 91.
doi: 10.16128/j.cnki.1005-3611.2017.01.020
13 TONG T , GAO Q , GUERRERO R , et al. A novel grading biomarker for the prediction of conversion from mild cognitive impairment to Alzheimer's disease[J]. IEEE Transactions on Biomedical Engineering, 2017, 64 (1): 155- 165.
doi: 10.1109/TBME.2016.2549363
14 FAN Y , BATMANGHELICH N , CLARK C M , et al. Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline[J]. NeuroImage, 2008, 39 (4): 1731- 1743.
doi: 10.1016/j.neuroimage.2007.10.031
15 YOUNG J , MODAT M , CARDOSO M J , et al. Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment[J]. NeuroImage: Clinical, 2013, (2): 735- 745.
16 BRON E E , KLEIN S , PAPMA J M , et al. Cross-cohort generalizability of deep and conventional machine learning for mri-based diagnosis and prediction of Alzheimer's disease[J]. NeuroImage: Clinical, 2021, 102712.
17 LIN W , GAO Q , YUAN J , et al. Predicting Alzheimer's disease conversion from mild cognitive impairment using an extreme learning machine-based grading method with multimodal data[J]. Frontiers in Aging Neuroscience, 2020, (12): 1- 9.
18 SHEN H T , ZHU X , ZHANG Z , et al. Heterogeneous data fusion for predicting mild cognitive impairment conversion[J]. Information Fusion, 2021, 66 (1): 54- 63.
19 YE D H, POHL K M, DAVATZIKOS C. Semi-supervised pattern classification: application to structural MRI of Alzheimer's disease[C]//IEEE International Workshop on Pattern Recognition in Neuroimaging. Seoul, Korea: IEEE, 2011: 1-4.
20 FILIPOVYCH R , DAVATZIKOS C . Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI)[J]. NeuroImage, 2011, 55 (3): 1109- 1119.
doi: 10.1016/j.neuroimage.2010.12.066
21 BATMANGHELICH K N, YE D H, POHL K M, et al. Disease classification and prediction via semi-supervised dimensionality reduction[C]//IEEE International Symposium on Biomedical Imaging. Chicago, USA: IEEE, 2011: 1086-1090.
22 CHENG B , LIU M , ZHANG D , et al. Domain transfer learning for MCI conversion prediction[J]. IEEE Transactions on Biomedical Engineering, 2015, 62 (7): 1805- 1817.
doi: 10.1109/TBME.2015.2404809
23 COUPÉ P , ESKILDSEN S F , MANJÓN J V , et al. Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease[J]. NeuroImage: Clinical, 2012, 1 (1): 141- 152.
doi: 10.1016/j.nicl.2012.10.002
24 LI Y , FANG Y , ZHANG H , et al. Self-weighting grading biomarker based on graph-guided information propagation for the prediction of mild cognitive impairment conversion[J]. IEEE Access, 2019, (7): 116632- 116642.
25 LIU X , TOSUN D , WEINER M W , et al. Locally linear embedding (LLE) for MRI based Alzheimer's disease classification[J]. NeuroImage, 2013, (83): 148- 157.
26 ZHU X , SUK H I , LEE S W , et al. Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification[J]. IEEE Transactions on Biomedical Engineering, 2016, 63 (3): 607- 618.
doi: 10.1109/TBME.2015.2466616
27 LI Y , FANG Y , WANG J , et al. Biomarker extraction based on subspace learning for the prediction of mild cognitive impairment conversion[J]. BioMed Research International, 2021, 5531940.
28 MWANGI B , TIAN T S , SOARES J C . A review of feature reduction techniques in neuroimaging[J]. Neuroinformatics, 2014, 12 (2): 229- 244.
doi: 10.1007/s12021-013-9204-3
29 FOLSTEIN M F , FOLSTEIN S E , MCHUGH P R . "Mini-mental state": a practical method for grading the cognitive state of patients for the clinician[J]. Journal of Psychiatric Research, 1975, 12 (3): 189- 198.
doi: 10.1016/0022-3956(75)90026-6
30 LEHTOVIRTA M , SOININEN H , LAAKSO M P , et al. SPECT and MRI analysis in Alzheimer's disease: relation to apolipoprotein E ε4 allele[J]. Journal of Neurology Neurosurgery & Psychiatry, 1996, 60 (6): 644- 649.
31 VERGHESE P B , CASTELLANO J M , HOLTZMAN D M . Apolipoprotein E in Alzheimer's disease and other neurological disorders[J]. Lancet Neurology, 2011, 10 (3): 241- 252.
doi: 10.1016/S1474-4422(10)70325-2
32 HALL A , MUÑOZ-RUIZ M , MATTILA J , et al. Generalizability of the disease state index prediction model for identifying patients progressing from mild cognitive impairment to Alzheimer's disease[J]. Journal of Alzheimer's Disease, 2015, 44 (1): 79- 92.
doi: 10.3233/JAD-140942
33 杨小惠, 吴芹, 石京山. ApoE4在阿尔茨海默病中的研究进展[J]. 临床与病理杂志, 2017, 37 (3): 627- 631.
YANG Xiaohui , WU Qin , SHI Jingshan . Research progress of apolipoprotein E4 in Alzheimer's disease[J]. Journal of Clinical and Pathological Research, 2017, 37 (3): 627- 631.
34 MORRIS J C . The clinical dementia rating (CDR): current version and scoring rules[J]. Neurology, 1993, 43 (11): 2412- 2414.
35 FISCHL B , SERENO M I , DALE A M . Cortical surface-based analysis. Ⅱ: Inflation, flattening, and a surface-based coordinate system[J]. NeuroImage, 1999, 9 (2): 195- 207.
doi: 10.1006/nimg.1998.0396
36 DALE A M , FISCHL B , SERENO M I . Cortical surface-based analysis. I. Segmentation and surface reconstruction[J]. NeuroImage, 1999, 9 (2): 179- 194.
doi: 10.1006/nimg.1998.0395
37 FISCHL B , LIU A , DALE A M . Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex[J]. IEEE Transactions on Medical Imaging, 2001, 20 (1): 70- 80.
doi: 10.1109/42.906426
38 FISCHL B , DALE A M . Measuring the thickness of the human cerebral cortex from magnetic resonance images[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97 (20): 11050- 11055.
39 TZOURIO-MAZOYER N , LANDEAU B , PAPATHANASSIOU D , et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain[J]. NeuroImage, 2002, 15 (1): 273- 289.
40 FAN R E , CHANG K W , HSIEH C J , et al. LIBLINEAR: a library for large linear classification[J]. Journal of Machine Learning Research, 2008, 9 (9): 1871- 1874.
41 CHANG C C , LIN C J . LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2 (3): 27.
42 ZHOU Q , GORYAWALA M , CABRERIZO M , et al. An optimal decisional space for the classification of Alzheimer's disease and mild cognitive impairment[J]. IEEE Transactions on Biomedical Engineering, 2014, 61 (8): 2245- 2253.
[1] 于泓,杜娟,魏琳,张利. 计及行为特征的市场化用户电量数据拟合方法[J]. 山东大学学报 (工学版), 2023, 53(4): 113-119.
[2] 张喜龙,韩萌,陈志强,武红鑫,李慕航. 动态集成选择的不平衡漂移数据流Boosting分类算法[J]. 山东大学学报 (工学版), 2023, 53(4): 83-92.
[3] 刘财辉,周琪,叶晓文. 一种基于改进ReliefF算法的入侵检测模型[J]. 山东大学学报 (工学版), 2023, 53(2): 1-10.
[4] 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88.
[5] 孙志巍,宋明阳,潘泽华,景丽萍. 上下文感知的判别式主题模型[J]. 山东大学学报 (工学版), 2022, 52(4): 131-138.
[6] 王丽,于明仟,刘文鹏,周瑜,郑蕊蕊,贺建军. 面向类不平衡数据的K近邻偏标记学习算法[J]. 山东大学学报 (工学版), 2022, 52(3): 18-24.
[7] 张学思,张婷,刘兆英,江天鹏. 基于轻量型卷积神经网络的海面红外显著性目标检测方法[J]. 山东大学学报 (工学版), 2022, 52(2): 41-49.
[8] 龚楷伦,翟婷婷,唐鸿成. 一种面向多标签分类的在线主动学习算法[J]. 山东大学学报 (工学版), 2022, 52(2): 80-88.
[9] 曹春红,段鸿轩,曹玲,张乐乐,胡凯,肖芬. 基于多级特征级联的遥感图像实时语义分割[J]. 山东大学学报 (工学版), 2021, 51(2): 19-25.
[10] 张沁洋,李旭,姚春龙,李长吾. 结合句法依存信息的方面级情感分类[J]. 山东大学学报 (工学版), 2021, 51(2): 83-89.
[11] 肖卓宇,何锫,陈果,徐运标,郭杰. 带特征指标约束描述的设计模式分类挖掘[J]. 山东大学学报 (工学版), 2020, 50(6): 48-58.
[12] 马常霞,张晨. 中文对话理解中基于预训练的意图分类和槽填充联合模型[J]. 山东大学学报 (工学版), 2020, 50(6): 68-75.
[13] 赵宁宁,唐雪嵩,赵鸣博. 基于卷积神经网络的深度线段分类算法[J]. 山东大学学报 (工学版), 2020, 50(4): 22-27.
[14] 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33.
[15] 冯超,徐鲲鹏,陈黎飞. 符号序列的LDA主题特征表示方法[J]. 山东大学学报 (工学版), 2020, 50(2): 60-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王素玉,艾兴,赵军,李作丽,刘增文 . 高速立铣3Cr2Mo模具钢切削力建模及预测[J]. 山东大学学报(工学版), 2006, 36(1): 1 -5 .
[2] 张永花,王安玲,刘福平 . 低频非均匀电磁波在导电界面的反射相角[J]. 山东大学学报(工学版), 2006, 36(2): 22 -25 .
[3] 李 侃 . 嵌入式相贯线焊接控制系统开发与实现[J]. 山东大学学报(工学版), 2008, 38(4): 37 -41 .
[4] 施来顺,万忠义 . 新型甜菜碱型沥青乳化剂的合成与性能测试[J]. 山东大学学报(工学版), 2008, 38(4): 112 -115 .
[5] 孔祥臻,刘延俊,王勇,赵秀华 . 气动比例阀的死区补偿与仿真[J]. 山东大学学报(工学版), 2006, 36(1): 99 -102 .
[6] 来翔 . 用胞映射方法讨论一类MKdV方程[J]. 山东大学学报(工学版), 2006, 36(1): 87 -92 .
[7] 余嘉元1 , 田金亭1 , 朱强忠2 . 计算智能在心理学中的应用[J]. 山东大学学报(工学版), 2009, 39(1): 1 -5 .
[8] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[9] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[10] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .