您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (2): 83-89.doi: 10.6040/j.issn.1672-3961.0.2020.246

• • 上一篇    

结合句法依存信息的方面级情感分类

张沁洋,李旭*,姚春龙,李长吾   

  1. 大连工业大学信息科学与工程学院, 辽宁 大连 116034
  • 发布日期:2021-04-16
  • 作者简介:张沁洋(1994— ),男,四川绵阳人,硕士研究生,主要研究方向为自然语言处理. E-mail:739320438@qq.com. *通信作者简介:李旭(1980— ),女,辽宁大连人,副教授,工学博士,主要研究方向为自然语言处理. E-mail:lixu102@aliyun.com
  • 基金资助:
    国家重点研发计划专项(2017YFC0821003-3);辽宁省教育厅科学研究项目(J2020113);辽宁省自然科学基金项目(20180550395)

Aspect-level sentiment classification combined with syntactic dependency information

ZHANG Qinyang, LI Xu*, YAO Chunlong, LI Changwu   

  1. School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
  • Published:2021-04-16

摘要: 引入句法依存信息到原方面术语,提出一种新的方面术语表示方法,利用Glove词向量表示单词以及单词与单词之间的依存关系,构造出包含句法依存信息的依存关系邻接矩阵和依存关系表示矩阵,利用图卷积神经网络和多头注意力机制将句法依存信息融入到方面术语中,使得方面术语表达与上下文结构高度相关。将改进后的方面词术语表示替换到现有模型后,模型泛化能力得到有效提升。对比试验和分析结果表明:该方法具有有效性和泛化性。

关键词: 句法依存信息, 方面级情感分类, Glove词向量, 图卷积, 注意力机制

Abstract: Considering introducing syntactic dependency information into the original aspect terms, a new aspect term representation method was proposed. First Glove word vector was used to represent the words and dependency relationship between words, and the dependency adjacency matrix and the representation of dependency relationship matrix including syntactic dependency information was constructed. Then graph convolution neural network and multi-head attention mechanism were used to integrate syntactic dependency information into aspect terms, so that aspect terms were highly related to context structure. The models generalization ability were effectively improved by replacing the existing models with the improved aspect term expression. Through comparative experiments and analysis, effectiveness and generalization of the method were proved.

Key words: syntactically dependency information, aspect-level sentiment classification, Glove word vector, graph convolution, attention mechanism

中图分类号: 

  • TP183
[1] WAGNER J, ARORA P, CORTES S, et al. Dcu: aspect-based polarity classification for SemEval task 4[C] //International Conference on Computational Linguistics. Dublin, Ireland: ACL, 2014: 223-229.
[2] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C] //Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, USA: ACL, 2016: 606-615.
[3] HAZARIKA D, PORIA S, VIJ P, et al. Modeling inter-aspect dependencies for aspect-based sentiment analysis[C] //Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics. New Orleans, USA: NAACL, 2018: 266-270.
[4] SCHMITT M, STEINHEBER S, SCHREIBER K, et al. Joint aspect and polarity classification for aspect-based sentiment analysis with end-to-end neural networks[DB/OL].(2018-08-28)[2020-04-15].https://arxiv.org/pdf/1808.09238.pdf.
[5] RAN X, PAN Y, SUN W, et al. Learn to select via hierarchical gate mechanism for aspect-based sentiment analysis[C] //Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence Main Track. Macao, China: IJCAI, 2019: 5160-5167.
[6] VASANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C] //31st Conference on Neural Information Processing Systems. Long Beach, USA: NIPS, 2017: 5998-6008.
[7] SONG Y, WANG J, JIANG T, et al. Targeted Sentiment Classification with Attentional Encoder Network[C] //International Conference on Artificial Neural Networks. Munich, Germany: ICANN, 2019: 93-103.
[8] SUN C, HUANG L, QIU X. Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence[DB/OL].(2019-03-22)[2020-04-30].https://arxiv.org/pdf/1903.09588.pdf.
[9] DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C] //Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(volume 2: Short papers). Baltimore, USA: AMACL, 2014: 49-54.
[10] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].(2017-02-22)[2020-4-30]. https://arxiv.org/pdf/1609.02907.pdf.
[11] RAO D, RAVICHANDRAN D. Semi-supervised polarity lexicon induction[C] //Proceedings of the 12th Con-ference of the European Chapter of the ACL. Athens, Greece: ECACL, 2009: 675-682.
[12] KIRITCHENKO S, ZHU X, MOHAMMAD S M. Sentiment analysis of short informal texts[J]. Journal of Artificial Intelligence Research, 2014, 50: 723-762.
[13] JIANG L, YU M, ZHOU M, et al. Target-dependent twitter sentiment classification[C] //Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: human language technologies. Portland, Oregon: ALACM, 2011: 151-160.
[14] TANG D, QIN B, LIU T. Aspect level sentiment classification with deep memory network[DB/OL].(2016-09-24)[2020-04-30]. https://arxiv.org/pdf/1605.08900.pdf.
[15] TAY Y, LUU A T, HUI S C. Learning to attend via word-aspect associative fusion for aspect-based sentiment analysis[DB/OL].(2017-12-14)[2020-4-30]. https://arxiv.org/pdf/1712.05403.pdf.
[16] XING B, LIAO L, SONG D, et al. Earlier attention? aspect-aware LSTM for aspect-based sentiment analysis[DB/OL].(2019-07-07)[2020-04-20]. https://arxiv.org/pdf/1905.07719.pdf.
[17] HE R, LEE W S, NG H T, et al. Effective attention modeling for aspect-level sentiment classification[C] //Proceedings of the 27th International Conference on Computational Linguistics. Santa Fe, New Mexico: ICCL, 2018: 1121-1131.
[18] SUN K, ZHANG R, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C] //Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong, China: JCNLP, 2019: 5683-5692.
[19] PENNINGTON J, SOCHER R, MANNING C D. Glove: Global vectors for word representation[C] //Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar: EMNLP, 2014: 1532-1543.
[20] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C] //International Conference on Computational Linguistics. Doha, Qatar: EMNLP, 2014: 27-35.
[21] KIRITCHENKO S, ZHU X, CHERRY C, et al. NRC-Canada-2014: detecting aspects and sentiment in customer reviews[C] //Proceedings of the 8th International Workshop on Semantic Evaluation. Dublin, Ireland: SemEval, 2014: 437-442.
[22] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[DB/OL].(2017-09-04)[2020-04-30]. https://arxiv.org/abs/1709.00893.
[23] LI X, CHANG D, TIAN T, et al. Large-margin regularized softmax cross-entropy loss[J]. IEEE Access, 2019, 7: 19572-19578.
[24] KINGMA D P, BA J. Adam: a method for stochastic optimization[DB/OL].(2015-07-23)[2020-04-30]. https://arxiv.org/pdf/1412.6980v8.
[25] DEVLIN J, CHANG M W, LEE K, et al. Bert: pre-training of deep bidirectional transformers for language understanding[DB/OL].(2019-05-09)[2020-04-30]. https://arxiv.org/pdf/1810.04805.pdf.
[1] 张俊三,程俏俏,万瑶,朱杰,张世栋. MIRGAN:一种基于GAN的医学影像报告生成模型[J]. 山东大学学报 (工学版), 2021, 51(2): 9-18.
[2] 张月芳,邓红霞,呼春香,钱冠宇,李海芳. 融合残差块注意力机制和生成对抗网络的海马体分割[J]. 山东大学学报 (工学版), 2020, 50(6): 76-81.
[3] 廖南星,周世斌,张国鹏,程德强. 基于类激活映射-注意力机制的图像描述方法[J]. 山东大学学报 (工学版), 2020, 50(4): 28-34.
[4] 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!