山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (5): 102-110.doi: 10.6040/j.issn.1672-3961.0.2021.474
• • 上一篇
马欢1,杨冬1,高志民2,曹永吉2*,秦昊2,程定一1,王亮3,蒋哲1
MA Huan1, YANG Dong1, GAO Zhimin2, CAO Yongji2*, QIN Hao2, CHENG Dingyi1, WANG Liang3, JIANG Zhe1
摘要: 针对双馈风机虚拟惯量控制的研究大多聚焦于转子转速恢复策略设计和控制参数优化,难以应对双馈风机出力骤降所带来的频率波动问题,本研究提出一种基于改进虚拟惯量法的频率综合控制策略,在双馈风机退出调频过程中,附加基于风机转速反馈的微分控制环节,降低转速恢复的速度,避免发生风机出力骤降,以抑制频率波动,同时综合超速控制,使双馈风机调频性能更优。在DIgSILENT/PowerFactory中搭建了仿真模型,对比验证了所提控制策略在不同场景下的有效性。算例结果表明,所提控制策略能够改进风机的惯量响应和一次调频特性,有效地避免频率快速变化。
中图分类号:
[1] 张恒旭,曹永吉,张怡,等. 电力系统频率动态行为衍变与分析方法需求综述[J]. 山东大学学报(工学版), 2021, 51(5): 42-52. ZHANG Hengxu, CAO Yongji, ZHANG Yi, et al. Review of frequency dynamic behavior evolution and analysis method requirements of power system[J]. Journal of Shandong University(Engineering Science), 2021, 51(5): 42-52. [2] 宋士瞻,王传勇,康文文,等. 考虑多重出力不确定性的风光装机容量优化[J]. 山东大学学报(工学版), 2018, 48(6): 101-108. SONG Shizhan, WANG Chuanyong, KANG Wenwen, et al. Wind and PV installed capacity optimization with hybrid uncertainty of renewable energy[J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 101-108. [3] 孙华东,王宝财,李文锋,等. 高比例电力电子电力系统频率响应的惯量体系研究[J]. 中国电机工程学报, 2020, 40(16): 5179-5192. SUN Huadong, WANG Baocai, LI Wenfeng, et al. Research on inertia system of frequency response for power system with high penetration electronics[J]. Proceedings of the CSEE, 2020, 40(16): 5179-5192. [4] 王飞,宋士瞻,曹永吉,等. 基于连续小波变换的风光发电资源多尺度评估[J]. 山东大学学报(工学版), 2018, 48(5): 124-130. WANG Fei, SONG Shizhan, CAO Yongji, et al. Multi-scale assessment of wind-solar generation resources based on continuous wavelet transform[J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 124-130. [5] MORREN J, DE HAAN S W H, KLING W L, et al. Wind turbines emulating inertia and supporting primary frequency control[J]. IEEE Transactions on Power Systems, 2006, 21(1): 433-434. [6] PENG Xiaotao, YAO Wei, YAN Cai, et al. Two-stage variable proportion coefficient based frequency support of grid-connected DFIG-WTs[J]. IEEE Transactions on Power Systems, 2020, 35(2): 962-974. [7] ASHOURI-ZADEH A, TOULABI M. An adaptive virtual inertia controller for DFIG considering nonlinear aerodynamic efficiency[J]. IEEE Transactions on Sustainable Energy, 2021, 12(2): 1060-1067. [8] 孙铭,徐飞,陈磊,等. 利用转子动能的风机辅助频率控制最优策略[J]. 中国电机工程学报, 2021, 41(2): 506-514. SUN Ming, XU Fei, CHEN Lei, et al. Optimal auxiliary frequency control strategy of wind turbine generator utilizing rotor kinetic energy[J]. Proceedings of the CSEE, 2021, 41(2): 506-514. [9] 劳焕景,张黎,宋鹏程,等. 一种考虑最优状态动态恢复的风电持续调频策略[J]. 电网技术, 2020, 44(12): 4504-4512. LAO Huanjing, ZHANG Li, SONG Pengcheng, et al. Wind power sustained frequency regulation strategy with dynamic optimized state recovery behavior[J]. Power System Technology, 2020, 44(12): 4504-4512. [10] HWANG M, MULJADI E, PARK J, et al. Dynamic droop-based inertial control of a doubly-fed induction generator[J]. IEEE Transactions on Sustainable Energy, 2016, 7(3): 924-933. [11] 张三洪,党杰,戴剑丰,等. 考虑最优转速与桨距角控制的风电场限功率优化控制策略[J]. 电网技术, 2021, 45(5): 1844-1851. ZHANG Sanhong, DANG Jie, DAI Jianfeng, et al. Optimal control strategy for wind power curtailment considering optimal speed and pitch angle control[J]. Power System Technology, 2021, 45(5): 1844-1851. [12] 丁磊,尹善耀,王同晓, 等. 结合超速备用和模拟惯性的双馈风机频率控制策略[J]. 电网技术, 2015, 39(9): 2385-2391. DING Lei, YIN Shanyao, WANG Tongxiao, et al. Integrated frequency control strategy of DFIGs based on virtual inertia and over-speed control[J]. Power System Technology, 2015, 39(9): 2385-2391. [13] TANG Xuesong, YIN Minghui, SHEN Chun, et al. Active power control of wind turbine generators via coordinated rotor speed and pitch angle regulation[J]. IEEE Transactions on Sustainable Energy, 2019, 10(2): 822-832. [14] 张昭遂,孙元章,李国杰,等. 超速与变桨协调的双馈风电机组频率控制[J]. 电力系统自动化, 2011, 35(17): 20-25. ZHANG Zhaosui, SUN Yuanzhang, LI Guojie, et al. Frequency regulation by doubly fed induction generator wind turbines based on coordinated overspeed control and pitch control[J]. Automation of Electric Power System, 2011, 35(17): 20-25. [15] 乔颖,郭晓茜,鲁宗相,等. 考虑系统频率二次跌落的风电机组辅助调频参数确定方法[J]. 电网技术, 2020, 44(3): 807-815. QIAO Ying, GUO Xiaoqian, LU Zongxiang, et al. Parameter setting of auxiliary frequency regulation of wind turbines considering secondary frequency drop[J]. Power System Technology, 2020, 44(3): 807-815. [16] 刘瑞. 双馈风机参与系统调频的二次跌落优化控制方法研究[D]. 北京: 华北电力大学, 2019. LIU Rui. Research on secondary drop optimized control method of DFIG participating in system frequency modulation[D]. Beijing: North China Electric Power University, 2019. [17] LIU Kangcheng, QU Yanbin, HAK-MAN K, et al. Avoiding frequency second dip in power unreserved control during wind power rotational speed recovery[J]. IEEE Transactions on Power Systems, 2018, 33(3): 3097-3106. [18] 刘璋玮,刘锋,梅生伟,等. 扩张状态观测器在双馈风电机组虚拟惯量控制转速恢复中的应用[J]. 中国电机工程学报,2016,36(5): 1207-1217. LIU Zhangwei, LIU Feng, MEI Shengwei, et al. Application of extended state observer in wind turbines speed recovery after inertia response control[J]. Proceedings of the CSEE, 2016, 36(5): 1207-1217. [19] 刘彬彬,杨健维,廖凯,等. 基于转子动能控制的双馈风电机组频率控制改进方案[J]. 电力系统自动化, 2016, 40(16): 17-22. LIU Binbin, YANG Jianwei, LIAO Kai, et al. Improved frequency control strategy for DFIG-based wind turbines based on rotor kinetic energy control[J]. Automation of Electric Power System, 2016, 40(16): 17-22. [20] KHESHTI Mostafa, DING Lei, BAO Weiyu, et al. Toward intelligent inertial frequency participation of wind farms for the grid frequency control[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11): 6772-6786. [21] 何成明,王洪涛,孙华东,等. 变速风电机组调频特性分析及风电场时序协同控制策略[J]. 电力系统自动化, 2013, 37(9): 1-6. HE Chengming, WANG Hongtao, SUN Huadong, et al. Analysis on frequency control characteristics of variable speed wind turbines and coordinated frequency control strategy of wind farm[J]. Automation of Electric Power System, 2013, 37(9): 1-6. [22] 王学财. 双馈风电机组虚拟惯量调频特性研究及动态转速保护策略[D]. 济南:山东大学, 2018. WANG Xuecai. Dynamic rotor speed protection for DFIG based wind turbines with virtual inertia control[D]. Jinan: Shandong University, 2018. |
[1] | 姜文玲,赵艳青,王勃,冯双磊,裴岩,张菲. 基于NWP辐照度斜面转换的光伏功率预测方法[J]. 山东大学学报 (工学版), 2021, 51(5): 114-121. |
[2] | 张恒旭,曹永吉,张怡,李常刚,阮佳程,TerzijaVLADIMIR. 电力系统频率动态行为衍变与分析方法需求综述[J]. 山东大学学报 (工学版), 2021, 51(5): 42-52. |
[3] | 王勃,汪步惟,杨明,赵元春,朱文立. 风电爬坡事件的非精确条件概率预测[J]. 山东大学学报 (工学版), 2020, 50(1): 82-94. |
[4] | 杨冬,王世文,王勇,陈博,郑天茹,周宁,肖天,赵雅文. 并网型风电场扩展光伏互补发电容量优化配置[J]. 山东大学学报 (工学版), 2019, 49(5): 44-51. |
[5] | 王李龑,王飞,曹永吉,张涛,张亚新,卢奕,刘子菡. 基于两层优化的主动配电网储能优化配置[J]. 山东大学学报 (工学版), 2019, 49(5): 37-43, 51. |
[6] | 李先栋,王飞,曹永吉,王李龑,王琳,卢奕,刘子菡. 基于层次分析法的梯次利用电池储能系统运行性能量化评估[J]. 山东大学学报 (工学版), 2019, 49(4): 123-129. |
[7] | 宋士瞻,王传勇,康文文,张健,闫红华,李鹏. 考虑多重出力不确定性的风光装机容量优化[J]. 山东大学学报 (工学版), 2018, 48(6): 101-108. |
[8] | 宋士瞻,王传勇,康文文,张健,闫红华,李鹏. 基于时序生产模拟的配电网光伏装机容量规划[J]. 山东大学学报 (工学版), 2018, 48(5): 131-136. |
[9] | 王飞,宋士瞻,曹永吉,谢红涛,张新华,张健,肖天,赵雅文. 基于连续小波变换的风光发电资源多尺度评估[J]. 山东大学学报 (工学版), 2018, 48(5): 124-130. |
[10] | 丛旖旎,曹增功,牟宏,王春义,刘玉田. 百万千瓦级滩涂光伏电站接入电网分析[J]. 山东大学学报(工学版), 2017, 47(6): 77-82. |
[11] | 荆业飞1,张承慧1*,徐蓓蓓2,李珂1,褚晓广1. 基于阻抗匹配的小型风电系统功率输出优化方法[J]. 山东大学学报(工学版), 2013, 43(5): 39-43. |
[12] | 荆业飞1,徐蓓蓓2,张承慧1*,李珂1,褚晓广1. 基于模式搜索的风能最大功率跟踪控制[J]. 山东大学学报(工学版), 2013, 43(5): 44-48. |
[13] | 高厚磊 田佳 杜强 武志刚 刘淑敏. 能源开发新技术——分布式发电[J]. 山东大学学报(工学版), 2009, 39(5): 106-110. |
[14] | 李志,余绍峰,苏毅方,王蔚,蒋宏图,张伟. 基于RTDS的配电网一二次融合仿真技术[J]. 山东大学学报 (工学版), 2020, 50(6): 112-117. |
[15] | 尹晓敏,孟祥剑,侯昆明,陈亚潇,高峰. 一种计及空间相关性的光伏电站历史出力数据的修正方法[J]. 山东大学学报 (工学版), 2021, 51(4): 118-123. |
|