山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (5): 16-31.doi: 10.6040/j.issn.1672-3961.0.2021.168
Jianqing WU(),Xiuguang SONG*()
摘要:
同步定位与建图(simultaneous localization and mapping, SLAM)技术作为智慧交通领域研究的热点, 是无人驾驶车辆自主规划路径的关键。围绕SLAM技术相关传感器类型、定位、制图、多传感器融合四方面, 从优缺点、适用范围、概率算法、地图类型及融合方式出发, 介绍SLAM技术实现过程中的各个环节, 系统阐述了国内外相关的研究成果。基于多传感器融合SLAM, 分析了目前常见的融合SLAM技术难题, 对SLAM技术的未来发展趋势及实际工程应用做出展望。
中图分类号:
1 |
赵光辉. 我国"互联网+"交通服务的演进与政策[J]. 中国流通经济, 2016, 30 (3): 39- 48.
doi: 10.3969/j.issn.1007-8266.2016.03.006 |
ZHAO Guanghui . Evolution and policy of "Internet+" transportation service in China[J]. China′s Circulation Economy, 2016, 30 (3): 39- 48.
doi: 10.3969/j.issn.1007-8266.2016.03.006 |
|
2 |
ILGEN Elke , KARFICH Natascga , LEVSEN Karsten , et al. Aromatic hydrocarbons in the atmospheric enviro-nment: part I: indoor versus outdoor sources, the influence of traffic[J]. Atmospheric Environment, 2001, 35 (7): 1235- 1252.
doi: 10.1016/S1352-2310(00)00388-5 |
3 |
CADENA Cesar , CARLONE Luca , CARRILLO Henry , et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32 (6): 1309- 1332.
doi: 10.1109/TRO.2016.2624754 |
4 |
周彦, 李雅芳, 王冬丽, 等. 视觉同时定位与地图创建综述[J]. 智能系统学报, 2018, 13 (1): 97- 106.
doi: 10.11992/tis.201703006 |
ZHOU Yan , LI Yafang , WANG Dongli , et al. Overview of visual simultaneous positioning with map creation[J]. Journal of Intelligent Systems, 2018, 13 (1): 97- 106.
doi: 10.11992/tis.201703006 |
|
5 |
《中国公路学报》编辑部. 中国交通工程学术研究综述·2016[J]. 中国公路学报, 2016, 29 (6): 1- 161.
doi: 10.3969/j.issn.1001-7372.2016.06.001 |
Editorial Department of China Journal of Highway . Review of traffic engineering research in China 2016[J]. China Journal of Highway and Transport, 2016, 29 (6): 1- 161.
doi: 10.3969/j.issn.1001-7372.2016.06.001 |
|
6 | 曹风魁, 庄严, 闫飞, 等. 移动机器人长期自主环境适应研究进展和展望[J]. 自动化学报, 2020, 46 (2): 205- 221. |
CAO Fengkui , ZHUANG Yan , YAN Fei , et al. Research progress and prospect of long-term autonomous environmental adaptation of mobile robots[J]. Acta Automatica Sinica, 2020, 46 (2): 205- 221. | |
7 |
祝朝政, 何明, 杨晟, 等. 单目视觉里程计研究综述[J]. 计算机工程与应用, 2018, 54 (7): 20- 28.
doi: 10.3778/j.issn.1002-8331.1712-0279 |
ZHU Chaozheng , HE Ming , YANG Sheng , et al. A review of monocular vision odometer research[J]. Computer Engineering and Applications, 2018, 54 (7): 20- 28.
doi: 10.3778/j.issn.1002-8331.1712-0279 |
|
8 | 谭静, 赵健康, 崔超. 基于双目视觉与IMU的组合导航算法[J]. 计算机工程与设计, 2021, 42 (2): 442- 448. |
TAN Jing , ZHAO Jiankang , CUI Chao . Integrated navigation algorithm based on binocular vision and IMU[J]. Computer Engineering and Design, 2021, 42 (2): 442- 448. | |
9 | ESSMAEEL Kyis, GALLO Luigi, DAMIANI Ernesto, et al. Temporal denoising of kinect depth data[C]//Proceedings of 8th International Conference on Signal Image Technology & Internet Based Systems. Sorrento, Italy: IEEE, 2013: 47-52. |
10 |
LIAO Ziwei , WANG Wei , QI Xianyu , et al. RGBD object SLAM using quadrics for indoor environments[J]. Sensors, 2020, 20 (18): 1- 34.
doi: 10.1109/JSEN.2020.3014328 |
11 |
HENRY Peter , KRAININ Michael , HERBST Evan , et al. RGBD mapping: using depth cameras for dense 3D modeling of indoor environments[J]. The International Journal of Robotics Research, 2012, 31 (5): 647- 663.
doi: 10.1177/0278364911434148 |
12 | DRYANOVSKI Ivan, VALENTI Roberto G, XIAO Jizhong. Fast visual odometry and mapping from RGBD data[C]//Proceedings of 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013: 2305-2310. |
13 |
杨明, 王宏, 何克忠, 等. 基于激光雷达的移动机器人环境建模与避障[J]. 清华大学学报(自然科学版), 2000, 40 (7): 112- 116.
doi: 10.3321/j.issn:1000-0054.2000.07.030 |
YANG Ming , WANG Hong , HE Kezhong , et al. Environment modeling and obstacle avoidance of mobile robot based on LiDAR[J]. Journal of Tsinghua University (Natural Science), 2000, 40 (7): 112- 116.
doi: 10.3321/j.issn:1000-0054.2000.07.030 |
|
14 | WU Jianqing, XU Hao, ZHENG Jianying. Automatic background filtering and lane identification with roadside LiDAR data[C]//Proceedings of 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Yokohama, Japan: IEEE, 2017: 6. |
15 | PATERNAIN Santiago , TAILANIAN Matias , CANETTI Rafael . Calibration of an inertial measurement unit[J]. International Applied Mechanics, 2017, 53 (2): 1- 6. |
16 | 秦志斌, 王慧娟. 智慧高速毫米波雷达应用浅析[J]. 中国交通信息化, 2021, (3): 130- 131. |
QIN Zhibin , WANG Huijuan . Application analysis of intelligent high speed millimeter wave radar[J]. Traffic Informatization in China, 2021, (3): 130- 131. | |
17 |
魏琴, 谷谢天, 陈平易. 智能汽车技术及环境感知传感器初探[J]. 内燃机与配件, 2019, (2): 174- 175.
doi: 10.3969/j.issn.1674-957X.2019.02.086 |
WEI Qin , GU Xietian , CHEN Pingyi . A preliminary study on intelligent vehicle technology and environmental sensing sensor[J]. Internal Combustion Engine and Accessories, 2019, (2): 174- 175.
doi: 10.3969/j.issn.1674-957X.2019.02.086 |
|
18 |
蔡毅, 王岭雪. 红外成像技术中的9个问题[J]. 红外技术, 2013, 35 (11): 671- 682.
doi: 10.11846/j.issn.1001_8891.201311001 |
CAI Yi , WANG Lingxue . Nine problems in infrared imaging technology[J]. Infrared Technology, 2013, 35 (11): 671- 682.
doi: 10.11846/j.issn.1001_8891.201311001 |
|
19 | 张本法, 孟祥萍, 岳华. 移动机器人定位方法概述[J]. 山东工业技术, 2014, (22): 250. |
ZHANG Benfa , MENG Xiangping , YUE Hua . Overview of localization methods for mobile robots[J]. Shandong Industrial Technology, 2014, (22): 250. | |
20 |
高云峰, 周伦, 吕明睿, 等. 自主移动机器人室内定位方法研究综述[J]. 传感器与微系统, 2013, 32 (12): 1- 5.
doi: 10.3969/j.issn.1000-9787.2013.12.001 |
GAO Yunfeng , ZHOU Lun , LV Mingrui , et al. A review of indoor positioning methods forautonomous mobile robots[J]. Sensors and Microsystems, 2013, 32 (12): 1- 5.
doi: 10.3969/j.issn.1000-9787.2013.12.001 |
|
21 |
纪嘉文, 杨明欣. 一种基于多传感融合的室内建图和定位算法[J]. 成都信息工程学院学报, 2018, 33 (4): 400- 407.
doi: 10.16836/j.cnki.jcuit.2018.04.009 |
JI Jiawen , YANG Mingxin . An indoor mapping and positioning algorithm based on multi-sensor fusion[J]. Journal of Chengdu Institute of Information Engineering, 2018, 33 (4): 400- 407.
doi: 10.16836/j.cnki.jcuit.2018.04.009 |
|
22 | MEINLSCHMIDT Thomas, ASCHEMANN Harald, BUTT Saif. Cascaded backstepping control of a Duocopter including disturbance compensation by unscented Kalman filtering[C]// Proceedings of 2014 Inter-national Conference on Control, Decision and Information Technologies. Metz, France: IEEE, 2014: 315-320. |
23 | 中国科学院电子学研究所, 中国科学院文献情报中心. 自动化技术、计算机技术[J]. 中国无线电电子学文摘, 2011, 27 (1): 161- 238. |
Institute of Electronics, Chinese Academy of Sciences , Literature and Information Center of Chinese Academy of Sciences . Automation technology, computer technology[J]. China Radio Electronics Abstracts, 2011, 27 (1): 161- 238. | |
24 | 熊敏君, 卢惠民, 熊丹, 等. 基于单目视觉与惯导融合的无人机位姿估计[J]. 计算机应用, 2017, 37 (增刊2): 127- 133. |
XIONG Minjun , LU Huimin , XIONG Dan , et al. UAV pose estimation based on monocular vision and inertial navigation fusion[J]. Computer Application, 2017, 37 (Suppl. 2): 127- 133. | |
25 |
吕太之, 周武, 赵春霞. 一种改进的UKF-SlAM算法[J]. 中北大学学报(自然科学版), 2018, 39 (6): 717- 725.
doi: 10.3969/j.issn.1673-3193.2018.06.014 |
LV Taizhi , ZHOU Wu , ZHAO Chunxia . An improved UKF-SLAM algorithm[J]. Journal of North University of China (Natural Science Edition), 2018, 39 (6): 717- 725.
doi: 10.3969/j.issn.1673-3193.2018.06.014 |
|
26 | KIMURA Aritoshi, ARIZONO Ikuo, OHTA Hiroshi. A back-propagation algorithm based on the extended Kalman filter[C]//Proceedings of 1993 International Joint Conference on Neural Networks. Nagoya, Japan: IJC, 1993: 1669-1672. |
27 | SMITH Randall , SELF Matthew , CHEESEMAN Peter . Estimating uncertain spatial relationships in robotics[J]. Machine Intelligence & Pattern Recognition, 1988, 5 (5): 435- 461. |
28 | YAVUZ Slrma, KURT Zeyneb, BICER M Serdar. Simultaneous localization and mapping using extended Kalman filter[C]//Proceedings of 2009 IEEE 17th Signal Processing and Communications Applications Conference. Antalya, Turkey: IEEE, 2009: 7000-7033. |
29 |
王盼盼, 黄宜庆. 基于时变调节因子的移动机器人EKF-SLAM算法[J]. 安徽工程大学学报, 2017, 32 (5): 46- 50.
doi: 10.3969/j.issn.2095-0977.2017.05.010 |
WANG Panpan , HUANG Yiqing . EKF-SLAM algorithm for mobile robots based on time-varying regulator[J]. Journal of Anhui Engineering University, 2017, 32 (5): 46- 50.
doi: 10.3969/j.issn.2095-0977.2017.05.010 |
|
30 |
付强, 张宏静, 赵建伟, 等. 移动机器人SLAM改进算法的分析与实现[J]. 兵工自动化, 2018, 37 (9): 86- 89.
doi: 10.7690/bgzdh.2018.09.021 |
FU Qiang , ZHANG Hongjing , ZHAO Jianwei , et al. Analysis and implementation of improved SLAM algorithm for mobile robots[J]. Ordnance Automation, 2018, 37 (9): 86- 89.
doi: 10.7690/bgzdh.2018.09.021 |
|
31 | 刘沛丰, 王坚. 一种基于抗差EKF的移动机器人定位技术[J]. 计算机科学, 2017, 44 (增刊1): 115- 118. |
LIU Peifeng , WANG Jian . A mobile robot localization technology based on robust EKF[J]. Computer Science, 2017, 44 (Suppl.1): 115- 118. | |
32 | 程璐, 黄宜庆. 基于Cholesky分解的改进自适应EKF-SLAM算法[J]. 安徽工程大学学报, 2020, 35 (2): 11- 20. |
CHENG Lu , HUANG Yiqing . Improved adaptive EKF-SLAM algorithm based on cholesky decomposition[J]. Journal of Anhui Engineering University, 2020, 35 (2): 11- 20. | |
33 |
CHATTERJEE Amitava , MATSUNO Fumitoshi . A neuro-fuzzy assisted extended Kalman filter-based approach for simultaneous localization and mapping (SLAM) problems[J]. IEEE Transactions on Fuzzy Systems, 2007, 15 (5): 984- 997.
doi: 10.1109/TFUZZ.2007.894972 |
34 | PIGA Nicola A. , BOTTAREL Fabrizio , FANTACCI Claudio . MaskUKF: an instance segmentation aided unscented Kalman filter for 6D object pose and velocitytracking[J]. Frontiers in Robotics and AI, 2021, 8 (38): 1- 17. |
35 | 孙海波, 童紫原, 唐守锋, 等. 基于卡尔曼滤波与粒子滤波的SLAM研究综述[J]. 软件导刊, 2018, 17 (12): 1- 3. |
SUN Haibo , TONG Ziyuan , TANG Shoufeng , et al. Review of SLAM research based on Kalman filter and particle filter[J]. Software Guide, 2018, 17 (12): 1- 3. | |
36 |
LIU Qin , LIU Zheng , LIU Yunfo . Nonorthogonal problem in iterated unscented Kalman filter for passive tracking[J]. IEEE Transactions on Electrical and Electronic Engineering, 2013, 8 (4): 415- 419.
doi: 10.1002/tee.21873 |
37 | CHEN Yunqiang, HUANG Thomas, RUI Yong. Parametric contour tracking using unscented Kalmanfilter[C]//Proceedings of 2002 International Conference on Image Processing: Vol Ⅲ. Beijing: IEEE, 2002: 613-616. |
38 |
刘艳, 程诚, 裴少婧. 鲁棒自适应无迹卡尔曼滤波的SLAM算法[J]. 电光与控制, 2019, 26 (8): 12- 16.
doi: 10.3969/j.issn.1671-637X.2019.08.003 |
LIU Yan , CHENG Cheng , PEI Shaojing . A SLAM algorithm for robust adaptive untraced Kalman filter[J]. Electro-Optical and Control, 2019, 26 (8): 12- 16.
doi: 10.3969/j.issn.1671-637X.2019.08.003 |
|
39 | QI Ming. An improved particle filter SLAM algorithm for AGVs[C]//Proceedings of 20 IEEE 6th Int-ernational Conference on Control Science and Systems Engineering. Beijing: IEEE, 2020: 27-31. |
40 |
GORDON N J , SALMONDD J , SMITHA F M . Novel-approach to nonlinear non-gaussian Bayesian state estimation[J]. IEEE Proceedings: F Radar and Signal Processing, 1993, 140 (2): 107- 113.
doi: 10.1049/ip-f-2.1993.0015 |
41 | 周武, 赵春霞. 一种改进的边缘粒子滤波slam方法[J]. 华中科技大学学报(自然科学版), 2008, (增刊1): 181- 185. |
ZHOU Wu , ZHAO Chunxia . An improved edge particle filtering SLAM method[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, (Suppl.1): 181- 185. | |
42 |
吴培良, 孔亮, 段亮亮, 等. 一种基于提议分布选择的改进边缘粒子滤波算法[J]. 小型微型计算机系统, 2016, 37 (2): 381- 384.
doi: 10.3969/j.issn.1000-1220.2016.02.036 |
WU Peiliang , KONG Liang , DUAN Liangliang , et al. An improved edge particle filtering algorithm based on proposed distribution selection[J]. Journal of Small and Micro Computer Systems, 2016, 37 (2): 381- 384.
doi: 10.3969/j.issn.1000-1220.2016.02.036 |
|
43 | DELLAERT Frank, FOX Dieter, BURGARD Wolfram, et al. Monte Carlo localization for mobile robots[C]//Proceedings of 1999 IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 1999: 1322-1328. |
44 |
石雪军, 纪志成. 基于改进粒子滤波的射频识别室内跟踪算法[J]. 计算机工程, 2015, 41 (11): 308- 313.
doi: 10.3969/j.issn.1000-3428.2015.11.053 |
SHI Xuejun , JI Zhicheng . Indoor tracking algorithm of radio frequency identification based on improved particle filter[J]. Computer Engineering, 2015, 41 (11): 308- 313.
doi: 10.3969/j.issn.1000-3428.2015.11.053 |
|
45 | 武斌, 田清. 改进无迹粒子滤波的室内移动目标定位[J]. 传感器与微系统, 2021, 40 (3): 153- 156. |
WU Bin , TIAN Qing . Indoor moving target localization algorithm based on improved untraceable particle filtering[J]. Transducers and Microsystems, 2021, 40 (3): 153- 156. | |
46 | MONTEMERLO Michael, THRUN Sebastian. Simultaneous localization and mapping with unknown data association using Fast SLAM[C]//Proceedings of 2003 IEEE International Conference on Robotics and Automation. Taipei, China: IEEE, 2003: 1985-1991. |
47 | THRUN Sebastian, MONTEMARLO Michael, KOLLER Daphne, et al. Fast SLAM: a factored solution to the simultaneous localization and mapping problem[C]//Proceedings of AAAI National Conference on Artificial Intelligence. Edmonton, Canada: IEEE, 2002: 240-248. |
48 |
BEESON Patrick , MODAYIL Joseph , KUIPERS Benjamin . Factoring the apping problem: mobile robot map-building in the hybrid spatial semantic hierarchy[J]. International Journal of Robotics Research, 2010, 29 (4): 428- 459.
doi: 10.1177/0278364909100586 |
49 |
崔杨. 智能移动机器人同步定位与地图构建算法研究[J]. 电子世界, 2013, (23): 113- 114.
doi: 10.3969/j.issn.1003-0522.2013.23.088 |
CUI Yang . Review on synchronous localization and map construction algorithm of intelligent mobile robot[J]. Electronic World, 2013, (23): 113- 114.
doi: 10.3969/j.issn.1003-0522.2013.23.088 |
|
50 | KOLHATKAR Chinmay, WAGLE Kranti. Review of SLAM algorithms for indoor mobile robot with LIDAR and RGBD camera technology[C]//Proceedings of ICEEE 2020. Antalya, Turkey: IEEE, 2021: 397-409. |
51 | 李万莉, 王文佳. 基于Hough变换的激光几何特征地图提取方法[J]. 机电一体化, 2018, 24 (7): 3- 7. |
LI Wanli , WANG Wenjia . Geometric feature map extraction for laser SLAM based on hough transform[J]. Mechatronics, 2018, 24 (7): 3- 7. | |
52 | ARSHAD Saba , KIM Gon-Woo . Role of deep learning in loop closure detection for visual and lidar SLAM: a survey[J]. Sensors, 2021, 21 (4): 17. |
53 | DINH Nam, KIM Gon-Woo. Solid-state LiDAR based-SLAM: a concise review and application[C]//Proceedings of 2021 IEEE International Conference on Big Data and Smart Computing. Jeju, Korea: IEEE, 2021: 302-305. |
54 | NUTZI Gabriel , WEISS Stephan , SCARAMUZZA Davide . Fusion of IMU and vision for absolute scale estimation in monocular SLAM[J]. Journal of Intelligent & Robotic Systems, 2011, 61 (1/2/3/4): 287- 299. |
55 | NIKOLIC Janosch, REHDER Joern, BURRI Michael. A synchronized visual-inertial sensor system with FPGA pre-processing for accurate real-time SLAM[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014: 431-437. |
56 | CONCHA Alejo, LOIANNO Giuseppe, KUMAR Vijay, et al. Visual-inertial direct SLAM[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016: 1331-1338. |
57 |
RAUL Mur-Artal , TARDOS Juan D . Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2 (2): 796- 803.
doi: 10.1109/LRA.2017.2653359 |
58 | QIN Tong, LI Peiliang, SHEN Shaojie. Relocalization, global optimization and map merging for monocular visual-inertial SLAM[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia: IEEE, 2018: 1197-1204. |
59 |
潘林豪, 田福庆, 应文健, 等. 融合双目视觉与惯导信息的高效视觉里程计算法[J]. 计算机应用研究, 2021, 38 (6): 1739- 1743.
doi: 10.19734/j.issn.1001-3695.2020.08.0188 |
PAN Linhao , TIAN Fuqing , YING Wenjian , et al. An efficient vision odometry method based on binocular vision and IMU information[J]. Application Research of Computers, 2021, 38 (6): 1739- 1743.
doi: 10.19734/j.issn.1001-3695.2020.08.0188 |
|
60 | 种一帆, 冀杰, 宫铭钱, 等. 半直接法与IMU融合的双目视觉里程计[J]. 西南师范大学学报(自然科学版), 2021, 46 (2): 112- 120. |
ZHONG Yifan , JI Jie , GONG Mingqian , et al. Binocular vision odometer with semi-direct method and IMU fusion[J]. Journal of Southwest Normal University (Natural Science Edition), 2021, 46 (2): 112- 120. | |
61 | BLOESCH Michael, OMARI Sammy, HUTTER Marco, et al. Robust visual inertial odometry using a direct EKF-based approach[C]//Proceedings of 2015 IEEE/RSI International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015: 298-304. |
62 | SCHNEIDER Thomas, DYMCZYK Marcin, FEHR Marius, et al. Maplab: an open framework for research in visual-inertial mapping and localization[J]. 2017, 3(3): 1418-1425. |
63 | 慈文彦, 黄影平, 胡兴. 视觉里程计算法研究综述[J]. 计算机应用研究, 2019, 36 (9): 2561- 2568. |
CI Wenyan , HUANG Yingping , HU Xing . Review of visual mileage calculation[J]. Application Research of Computers, 2019, 36 (9): 2561- 2568. | |
64 | YE Haoyang, CHEN Yuying, LIU Ming. Tightly coupled 3D Lidar inertial odometry and mapping[C]//Proceedings of the 2019 International Conference on Robotics and Automation. Montreal, Canada: ICRA, 2019: 3144-3150. |
65 | 庞帆, 危双丰, 师现杰, 等. 激光雷达惯导耦合的里程计与建图方法[J]. 计算机应用研究, 2021, 38 (6): 1- 7. |
PANG Fan , WEI Shuangfeng , SHI Xianjie , et al. Odometer and mapping method for lidar inertial navigation coupling[J]. Computer Application Research, 2021, 38 (6): 1- 7. | |
66 | 张艳国, 李擎. 基于惯性测量单元的激光雷达点云融合方法[J]. 系统仿真学报, 2018, 30 (11): 4334- 4339. |
ZHANG Yanguo , LI Qing . LiDAR point cloud fusion method based on inertial measurement unit[J]. Journal of System Simulation, 2018, 30 (11): 4334- 4339. | |
67 | GENEVA Patrick, ECKENHOFF Kevin, YANG Yulin, et al. LIPS: LiDAR-inertial 3D plane SLAM[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018: 123-130. |
68 | LV Bin , XU Hao , WU Jianqing , et al. Revolution and rotation-based method for roadside LiDAR data integration[J]. Optics & Laser Technology, 2019, 119, 105571. |
69 |
WU Jianqing , XU Hao , LIU Wei . Points registration for roadside LiDAR sensors[J]. Transportation Research Record, 2019, 2673 (9): 627- 639.
doi: 10.1177/0361198119843855 |
70 | YUE Rui , XU Hao , WU Jianqing , et al. Data registration with ground points for roadside LiDAR sensors[J]. Remote Sensing, 2019, 11 (11): 16. |
71 | NEWMAN P, COLE D, HO K. Outdoor SLAM using visual appearance and laser ranging[C]//Proceedings of 2006 IEEE International Conference on Robotics and Automation. Orlando, USA: IEEE, 2006: 1180-1187. |
72 | LIN Kuenhan , CHANG Chunhua , DOPFER Andreas , et al. Mapping and localization in 3D environments using a 2D laser scanner and a stereo camera[J]. Journal of Information Science and Engineering, 2012, 28 (1): 131- 144. |
73 |
WEN Chenglu , QIN Ling , ZHU Qingyuan , et al. Three-dimensional indoor mobile mapping with fusion of two-dimensional laser scanner and RGBD camera data[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11 (4): 843- 847.
doi: 10.1109/LGRS.2013.2279872 |
74 | SHIN Y S, PARK Y S, KIM Ayoung. Direct visual SLAM using sparse depth for camera-LiDAR system[C]// Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia: IEEE, 2018: 5144-5151. |
75 |
ZHANG Ji , SINGH Sanjiv . Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots, 2017, 41 (2): 401- 416.
doi: 10.1007/s20514-016-9548-2 |
76 | CHEN Mengxiao, YANG Shaowu, YI Xiaodong, et al. Real-time 3D mapping using a 2D laser scanner and IMU-aided visual SLAM[C]//Proceedings of the 2017 IEEE International Conference on Real-time Computing and Robotics. Okinawa, Japan: IEEE, 2017: 207-302. |
77 | HUANG Kaihong, STACHNISS Cyrill. Joint ego-motion estimation using a laser scanner and a monocular camera through relative orientation estimation and 1-DoF ICP[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018: 671-676. |
78 | DING Xiaqing, WANG Yue, LI Dongxuan, et al. Laser map aided visual inertial localization in changing environment[C]// Proceedings of 25th IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018: 4794-4801. |
79 |
ZHANG Ji , SINGH Sanjiv . Laser-visual-inertial odometry and mapping with high robustness and low drift[J]. Journal of Field Robotics, 2018, 35 (8): 1242- 1264.
doi: 10.1002/rob.21809https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21809 |
80 |
肖军浩, 施成浩, 黄开宏, 等. 单目相机-3维激光雷达的外参标定及融合里程计研究[J]. 机器人, 2021, 43 (1): 17- 28.
doi: 10.13973/j.cnki.robot.200030 |
XIAO Junhao , SHI Chenghao , HUANG Kaihong , et al. Study on external reference calibration and fusion odometer of monocular camera-3D lidar[J]. The Robot, 2021, 43 (1): 17- 28.
doi: 10.13973/j.cnki.robot.200030 |
|
81 |
郭安, 周洲, 祝小平, 等. 基于EKF算法的太阳能无人机低成本飞控状态估计[J]. 控制与决策, 2020, 35 (10): 2415- 2423.
doi: 10.13195/j.kzyjc.2019.0091 |
GUO An , ZHOU Zhou , ZHU Xiaoping , et al. Low-cost flight control state estimation of solar unmanned aerial vehicle based on EKF algorithm[J]. Control and Decision Making, 2020, 35 (10): 2415- 2423.
doi: 10.13195/j.kzyjc.2019.0091 |
|
82 |
罗荣华, 洪炳镕. 基于信息融合的同时定位与地图创建研究[J]. 哈尔滨工业大学学报, 2004, (5): 566- 569.
doi: 10.3321/j.issn:0367-6234.2004.05.002 |
LUO Ronghua , HONG Bingrong . Research on simultaneous localization and map creation based oninformation fusion[J]. Journal of Harbin Institute of Technology, 2004, (5): 566- 569.
doi: 10.3321/j.issn:0367-6234.2004.05.002 |
|
83 | 崔巍杰. 毫米波和激光雷达数据融合的SLAM算法研究[D]. 成都: 电子科技大学机械工程系, 2019. |
CUI Weijie. SLAM algorithm for millimeter wave and LiDAR data fusion[D]. Chengdu: Department of Mechanical, Engineering University of Electronic Science and Technology, 2019. | |
84 | 王泽华, 梁冬泰, 梁丹, 等. 基于惯性/磁力传感器与单目视觉融合的slam方法[J]. 机器人, 2018, 40 (6): 933- 941. |
WANG Zehua , LIANG Dongtai , LIANG Dan , et al. SLAM method based on inertial/magnetic sensor and monocular vision fusion[J]. The Robot, 2018, 40 (6): 933- 941. | |
85 | HERTZBERG Christoph , WAGNER Rene , FRESE UdO , et al. Integrating generic sensor fusion algorithms with sound state representations through encapsulation of manifolds[J]. Information Fusion, 2011, 14 (1): 57- 77. |
86 |
KO N Y , YOUN Wonkeun , CHOI I H , et al. Features of invariant extended Kalman filter applied to unmanned aerial vehicle navigation[J]. Sensors, 2018, 18 (9): 2855.
doi: 10.3390/s28092855 |
87 | 陈梦园, 任玥. 环境感知传感器在车辆智能化中的应用[C]//重庆汽车工程学会2019年论文汇编. 重庆: 重庆汽车工程学会, 2019: 33-38. |
CHEN Mengyuan, REN Yue. Application of environmental sensing sensor in vehicle intelligence[C]//Proceedings of Chongqing Automotive Engineering Society. Chongqing: CAES, 2019: 33-38. | |
88 |
杨雪梦, 姚敏茹, 曹凯. 移动机器人SLAM关键问题和解决方法综述[J]. 计算机系统应用, 2018, 27 (7): 1- 10.
doi: 10.15888/j.cnki.csa.006451 |
YANG Xuemeng , YAO Minru , CAO Kai . Review on key problems and solutions for mobile robot SLAM[J]. Application of Computer Systems, 2018, 27 (7): 1- 10.
doi: 10.15888/j.cnki.csa.006451 |
|
89 | 李小玲. SLAM问题中的数据关联方法研究[J]. 计算机产品与流通, 2019, (8): 114. |
LI Xiaoling . Research on data association method for SLAM problem[J]. Computer Products & Circulation, 2019, (8): 114. | |
90 | BAR-SHALOM Yaakov , DAUM Fred , HUANG Jim . The probabilistic data association filter[J]. IEEE Control Systems, 2010, 29 (6): 82- 100. |
91 | BAILEY T, NEBOT E M, ROSENBLATT J K, et al. Data association for mobile robot navigation: a graph theoretic approach[C]//Proceedings of IEEE Int-ernational Conference on Robotics and Automation. San Francisco, USA: IEEE, 2000: 2512-2517. |
92 | 张铁. 移动机器人里程计系统误差的校正方法[J]. 华南理工大学学报(自然科学版), 2014, 42 (9): 7- 11. |
ZHANG Tie . Calibration method of mobile robot odometer system error[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42 (9): 7- 11. | |
93 | 余宇, 胡峰. 基于深度学习的视觉SLAM回环检测方法[J]. 计算机工程与设计, 2020, 41 (2): 529- 536. |
YU Yu , HU Feng . A Loop detection method for visual SLAM based on deep learning[J]. Computer Engineering and Design, 2020, 41 (2): 529- 536. | |
94 | 房立金, 刘博, 万应才. 基于深度学习的动态场景语SLAM[J]. 华中科技大学学报(自然科学版), 2020, 48 (1): 121- 126. |
FANG Lijin , LIU Bo , WAN Yingcai . Semantic SLAM for dynamic scenes based on deep learning[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48 (1): 121- 126. | |
95 | 张凯, 阳杰. 深度学习下的视觉SLAM回环检测及其算法[J]. 微处理机, 2021, 42 (1): 43- 46. |
ZHANG Kai , YANG Jie . Loop detection and algorithm for visual SLAM based on deep learning[J]. Microprocessor, 2021, 42 (1): 43- 46. | |
96 | 张国栋. 基于深度学习的视觉SLAM系统[J]. 电子制作, 2019, (1): 62- 64. |
ZHANG Guodong . A visual SLAM system based on deep learning[J]. Electronic Manufacturing, 2019, (1): 62- 64. | |
97 |
LI Ruihao , WANG Sen , GU Dongbing . Deep SLAM: a robust monocular SLAM system with unsupervised deeplearning[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (4): 3577- 3587.
doi: 10.1109/TIE.2020.2982096 |
98 | LI Guangqiang , YU Lei , FEI Shumin . A deep-learning real-time visual SLAM system based on multi-task featureextraction network and self-supervised feature points[J]. Measurement, 2021, 168 (4/5): 108403. |
99 |
MEMON A R , WANG Hesheng , HUSSAINAbid . Loop closure detection using supervised and unsupervised deepneural networks for monocular SLAM systems[J]. Robotics and Autonomous Systems, 2020, 126, 103470.
doi: 10.1016/j.robot.2020.103470 |
100 |
ZHAO Xinyang , WANG Changhong , ANG M H . Real-time visual-inertial localization using semanticsegmentation towards dynamic environments[J]. IEEE Access, 2020, 8, 155047- 155059.
doi: 10.1109/ACCESS.2020.3018557 |
101 | MANSOUR Mostafa , DAVIDSON Pavel , STEPANOV Oleg . Towards semantic SLAM: 3D position and velocity estimation by fusing image semantic information with camera motion parameters for traffic scene analysis[J]. Remote Sensing, 2021, 13 (3): 17. |
102 | 吴凡, 宗艳桃, 汤霞清. 视觉SLAM的研究现状与展望[J]. 计算机应用研究, 2020, 37 (8): 2248- 2254. |
WU Fan, ZONG Yantao, TANG Xiaqing. Application Research of Computers [J]. 2020, 37(8): 2248-2254. | |
103 | KIM Hanme, LEUTENEGGER Stefan, DAVISONA J. Real-time 3D reconstruction and 6-DoF tracking with an event camera[C]//Proceedings of Computer Vision-Eccv 2016. Amsterdam, the Netherlands: ECCV, 2016: 349-364. |
104 | 马艳阳, 叶梓豪, 刘坤华, 等. 基于事件相机的定位与建图算法: 综述[J]. 自动化学报, 2021, 47 (7): 1484- 1494. |
MA Yanyang , YE Zihao , LIU Kunhua , et al. Event camera based localization and mapping algorithms: a review[J]. Acta Automatica Sinica, 2021, 47 (7): 1484- 1494. | |
105 | 吴建清, 宋修广. 智慧公路关键技术发展综述[J]. 山东大学学报(工学版), 2020, 50 (4): 52- 69. |
WU Jianqing , SONG Xiuguang . Review on smart highways critical technology[J]. Journal of Shandong University (Engineering Science), 2020, 50 (4): 52- 69. |
[1] | 李英,吕学宾,李岩,孙守晶. 基于超宽带技术的变电站施工用工器具安全管控方法[J]. 山东大学学报 (工学版), 2021, 51(3): 84-90. |
[2] | 柴庆发,孙守晶,邱吉福,陈明,魏振,丛伟. 气象灾害条件下电网应急物资预测方法[J]. 山东大学学报 (工学版), 2021, 51(3): 76-83. |
[3] | 杨修远,彭韬,杨亮,林鸿飞. 基于知识蒸馏的自适应多领域情感分析[J]. 山东大学学报 (工学版), 2021, 51(3): 15-21. |
[4] | 廖锦萍,莫毓昌,YAN Ke. 基于C-LSTM的短期用电预测模型和应用[J]. 山东大学学报 (工学版), 2021, 51(2): 90-97. |
[5] | 周风余,顾潘龙,万方,尹磊,贺家凯. 多运动视觉里程计的方法与技术[J]. 山东大学学报 (工学版), 2021, 51(1): 1-10. |
[6] | 刘帅,王磊,丁旭涛. 基于Bi-LSTM的脑电情绪识别[J]. 山东大学学报 (工学版), 2020, 50(4): 35-39. |
[7] | 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13. |
[8] | 麻常辉,王亮,谭邵卿,卢奕,马欢,赵康. 考虑同步调相机无功特性的多馈入直流同时换相失败风险评估方法[J]. 山东大学学报 (工学版), 2020, 50(3): 98-103. |
[9] | 李春阳,李楠,冯涛,王朱贺,马靖凯. 基于深度学习的洗衣机异常音检测[J]. 山东大学学报 (工学版), 2020, 50(2): 108-117. |
[10] | 陈德蕾,王成,陈建伟,吴以茵. 基于门控循环单元与主动学习的协同过滤推荐算法[J]. 山东大学学报 (工学版), 2020, 50(1): 21-27,48. |
[11] | 顾雪平, 杨超, 梁海平, 王元博, 李少岩. 异步电网并行协调恢复策略的优化制定方法[J]. 山东大学学报 (工学版), 2019, 49(5): 9-16. |
[12] | 张继,金翠,王洪元,陈首兵. 基于奇异值分解行人对齐网络的行人重识别[J]. 山东大学学报 (工学版), 2019, 49(5): 91-97. |
[13] | 万鹏. 基于F-PointNet的3D点云数据目标检测[J]. 山东大学学报 (工学版), 2019, 49(5): 98-104. |
[14] | 梁志祥,刘晓明,牟颖,刘玉田. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报 (工学版), 2019, 49(5): 24-28. |
[15] | 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8. |
|