山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (5): 8-15.doi: 10.6040/j.issn.1672-3961.0.2021.161
庄培芝1(),张营超1,宋修广1,杨鹤1,*(),郭志成1,2,胡岩3
Peizhi ZHUANG1(),Yingchao ZHANG1,Xiuguang SONG1,He YANG1,*(),Zhicheng GUO1,2,Yan HU3
摘要:
为研究砂颗粒尺寸效应对桩侧摩阻力的影响, 开展理论分析和室内模型试验研究桩侧摩阻力随桩径、桩表面粗糙度和砂土中值粒径的变化规律, 建立考虑尺寸效应的桩侧摩阻力修正计算方法。考虑尺寸效应后, 通过拟合试验数据得到桩-土界面极限摩擦角与相对粗糙度的关系。为反映尺寸效应对桩侧法向应力增量的影响, 将桩-土界面剪切带视作弹性空心圆柱, 基于小孔扩张理论建立桩侧法向应力增量的改进计算方法, 并通过与模型试验结果对比验证该方法的可靠性。研究表明, 在一定范围内桩侧摩阻力主要受桩-土界面相对粗糙度和桩基与砂土中值粒径的比值两个参数影响, 其中界面相对粗糙度和桩基与砂土中值粒径比值分别通过影响桩-土界面极限摩擦角和法向应力增量进而影响桩侧摩阻力。研究结果可为微型桩等小直径桩基承载力设计提供相应的理论依据。
中图分类号:
1 | 刘修成, 徐杰, 游新鹏, 等. 珊瑚礁地质大直径钢管打入桩承载特性研究[J]. 海洋工程, 2019, 37 (6): 157- 163. |
LIU Xiucheng , XU Jie , YOU Xinpeng , et al. Study on bearing behavior of large diameter driven steel pipe pile in coral reef geology[J]. The Ocean Engineering, 2019, 37 (6): 157- 163. | |
2 |
龚晓怡, 邓振洲, 李存兴, 等. 基于标准贯入度试验的桩基轴向承载力估算[J]. 水运工程, 2020, (10): 165- 171.
doi: 10.3969/j.issn.1002-4972.2020.10.030 |
GONG Xiaoyi , DENG Zhenzhou , LI Cunxing , et al. Estimation on axial bearing capacity of pile foundation based on standard penetration test[J]. Port & Waterway Engineering, 2020, (10): 165- 171.
doi: 10.3969/j.issn.1002-4972.2020.10.030 |
|
3 | 朱斌, 杨永垚, 余振刚, 等. 海洋高桩基础水平单调及循环加载现场试验[J]. 岩土工程学报, 2012, 34 (6): 1028- 1037. |
ZHU Bin , YANG Yongyao , YU Zhengang , et al. Field tests on lateral monotonic and cyclic loadings of offshore elevated piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (6): 1028- 1037. | |
4 |
RANDOLPH M F , DOLWIN R , BECK R . Design of driven piles in sand[J]. Géotechnique, 1994, 44 (3): 427- 448.
doi: 10.1680/geot.1994.44.3.427 |
5 | TOOLAN F, LINGS M, MIRZA U. An appraisal of API RP2A recommendations for determining skin friction of piles in sand[C]//Proceeding 22nd Offshore Technology Conference. Houston, America: Offshore Technology Conference, 1990: 33-42. |
6 | BUSTAMANTE M, GIANESELLI L. Pile bearing capacity prediction by means of static penetrometer CPT[C]//Proceedings of the 2nd European Symposium on Penetration Testing. Paris, France: CRC Press, 1982: 493-500. |
7 | DE KUITER J , BERINGEN F . Pile foundations for large North Sea structures[J]. Marine Georesources & Geotechnology, 1979, 3 (3): 267- 314. |
8 | KOLK H, BAAIJENS A, SENDERS M. Design criteria for pipe piles in silica sands[C]//Proceeding 1st International Symposium on Frontiers in Offshore Geotechnics. Balkema Perth, Australia: CRC Press, 2005: 711-716. |
9 | SCHMERTMANN J H. Guidelines for cone penetration test: performance and design[R]. Washington, USA: Federal Highway Administration, 1978. |
10 | 蔡国军, 刘松玉. 基于CPTU测试的桩基承载力预测新方法[J]. 岩土工程学报, 2010, 32 (增刊2): 479- 482. |
CAI Guojun , LIU Songyu . New method based on CPTU data to evaluate pile bearing capacity[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (Suppl.2): 479- 482. | |
11 | 严凯, 庞玉麟, 李卫超, 等. 基于CPT的锤击桩贯入分析理论模型[J]. 建筑科学, 2020, 36 (增刊1): 68- 76. |
YAN Kai , PANG Yulin , LI Weichao , et al. CPT-based model for penetration simulation of hammer installed piles[J]. Building Science, 2020, 36 (Suppl.1): 68- 76. | |
12 | JARDINE R , CHOW F , OVERY R , et al. ICP design methods for driven piles in sands and clays[M]. London, UK: Thomas Telford, 2005. |
13 | LEHANE B , SCHNEIDER J , XU X . The UWA-05 method for prediction of axial capacity of driven piles in sand[J]. Frontiers in Offshore Geotechnics, 2005, 221 (12): 683- 689. |
14 | 史乃伟. 钙质砂界面摩擦特性研究[D]. 天津: 天津大学, 2018. |
SHI Naiwei. Research on the properties of interface friction between calcareous sand and structure[D]. Tianjin: Tianjin University, 2018. | |
15 | 郭聚坤, 雷胜友, 魏道凯, 等. 粗糙度对结构物-细砂界面剪切特性的影响[J]. 水利水运工程学报, 2019, (3): 85- 94. |
GUO Jukun , LEI Shengyou , WEI Daokai , et al. Effects of roughness on shear properties of structure-sands interface[J]. Hydro-Science and Engineering, 2019, (3): 85- 94. | |
16 | 郭聚坤, 雷胜友, 王瑞, 等. 结构物-标准砂界面剪切机理试验研究[J]. 地下空间与工程学报, 2020, 16 (3): 722- 733. |
GUO Jukun , LEI Shengyou , WANG Rui , et al. Study on interface shear mechanism between structures and standard sand[J]. Chinese Journal of Underground Space and Engineering, 2020, 16 (3): 722- 733. | |
17 |
UESUGI M , KISHIDA H . Frictional resistance at yield between dry sand and mild steel[J]. Soils and Foundations, 1986, 26 (4): 139- 149.
doi: 10.3208/sandf1972.26.4_139 |
18 | JARDINE RJ, LEHANE BM, EVERTON SJ. Friction coefficients for piles in sands and silts[C]//Offshore Site Investigation and Foundation Behaviour. Dordrecht, Netherlands: Springer, 1993: 661-677. |
19 |
FROST J , DEJONG J , RECALDE M . Shear failure behavior of granular-continuum interfaces[J]. Engineering Fracture Mechanics, 2002, 69 (17): 2029- 2048.
doi: 10.1016/S0013-7944(02)00075-9 |
20 |
GARNIER J , GAUDIN C , SPRINGMAN SM , et al. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling[J]. International Journal of Physical Modelling in Geotechnics, 2007, 7 (3): 1- 23.
doi: 10.1680/ijpmg.2007.070301 |
21 | BOULON M, FORAY P. Physical and numerical simulation of lateral shaft friction along offshore piles in sand[C]//Proc. 3rd Int. Conf. on Numerical Methods in Offshore Piling. Nantes, France: Institut Francais du Petrol Nantes, 1986: 127-147. |
22 |
LINGS M , DIETZ M . The peak strength of sand-steel interfaces and the role of dilation[J]. Soils and Foundations, 2005, 45 (6): 1- 14.
doi: 10.3208/sandf.45.1 |
23 |
PAIKOWSKY S G , PLAYER C M , CONNORS P J . A dual interface apparatus for testing unrestricted friction of soil along solid surfaces[J]. Geotechnical Testing Journal, 1995, 18 (2): 168- 193.
doi: 10.1520/GTJ10320J |
24 | DIETZ M S. Developing an holistic understanding of interface friction using sand with direct shear apparatus[D]. Bristol: University of Bristol, 2000. |
25 |
TURNER J P , KULHAWY F H . Physical modeling of drilled shaft side resistance in sand[J]. Geotechnical Testing Journal, 1994, 17 (3): 282- 290.
doi: 10.1520/GTJ10103J |
26 |
BALACHOWSKI L . Scale effect in shaft friction from the direct shear interface tests[J]. Archives of Civil and Mechanical Engineering, 2006, 6 (3): 13- 28.
doi: 10.1016/S1644-9665(12)60238-6 |
27 |
DEJONG J T , WESTGATE Z J . Role of initial state, material properties, and confinement condition on local and global soil-structure interface behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135 (11): 1646- 1660.
doi: 10.1061/(ASCE)1090-0241(2009)135:11(1646) |
28 |
FIORAVANTE V . On the shaft friction modelling of non-displacement piles in sand[J]. Soils and Foundations, 2002, 42 (2): 23- 33.
doi: 10.3208/sandf.42.2_23 |
29 |
HO T Y K , JARDINE RJ , ANH-MINH N . Large-displacement interface shearbetween steel and granular media[J]. Geotechnique, 2011, 61 (3): 221- 234.
doi: 10.1680/geot.8.P.086 |
30 |
LECHANE BM , GAUDIN C , SCHNEIDER JA . Scale effects on tension capacity forrough piles buried in dense sand[J]. Geotechnique, 2005, 55 (10): 709- 719.
doi: 10.1680/geot.2005.55.10.709 |
31 |
TEHRAANI FS , HAN F , SALGADO R , et al. Effect of surface roughness on the shaft resistance of non-displacement piles embedded in sand[J]. Geotechnique, 2016, 66 (5): 386- 400.
doi: 10.1680/jgeot.15.P.007 |
32 |
YANGZ , JARDINE RJ , ZHU B , et al. Sand grain crushing and interface shearing during displacement pile installation in sand[J]. Geotechnique, 2010, 60 (6): 469- 482.
doi: 10.1680/geot.2010.60.6.469 |
33 | FORAY P, BALACHOWSKI L, RAULT G. Scale effect in shaft friction due to the localisation of deformations[C]//Proceedings of the International Conference Centrifuge. Tokyo, Japan: A.A. Balkema, 1998: 211-216. |
34 | GARNIER J, KONIG D. Scale effects in piles and nails loading tests in sand[C]//Proceedings of the Int-ernational Conference Centrifuge. Tokyo, Japan: A.A. Balkema, 1998: 205-210. |
35 | LAST N. Cone penetration tests on samples of dry Hokksund sand in a rigid walled chamber[R]. Norwegian Geotechnical Institute, 1979. |
36 |
BOLTON M D , GUI M W , GARNIER J , et al. Centrifuge cone penetration tests in sand[J]. Géotechnique, 1999, 49 (4): 543- 552.
doi: 10.1680/geot.1999.49.4.543 |
37 | SCHNEIDER J A. Analbnysis of piezocone data for displacement pile design[D]. Western Australia: University of Western Australia, 2007. |
[1] | 李晓亮,刘源,李玉鑫,江建宏,魏琨,张宏博. 砂土介质中废旧轮胎加筋条带拉拔特性[J]. 山东大学学报 (工学版), 2021, 51(4): 54-60. |
[2] | 冯啸,夏冲,王凤刚,张兵. 砂土介质中颗粒浆液扩散距离变化规律[J]. 山东大学学报 (工学版), 2020, 50(5): 20-25. |
[3] | 蒋明镜1,2, 李秀梅1,2. 双轴压缩试验中砂土剪切带形成的离散元模拟分析[J]. 山东大学学报(工学版), 2010, 40(2): 52-58. |
[4] | 张宏博,苗海涛,宋修广. 长期交通荷载作用下粉砂土累积变形本构模型构建及数值积分格式[J]. 山东大学学报(工学版), 2010, 40(2): 59-65. |
[5] | 黄增彦,王广月,李倩,赵明 . 基于可拓学的砂土液化等级评价研究[J]. 山东大学学报(工学版), 2008, 38(5): 31-35 . |
|