您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (2): 47-56.doi: 10.6040/j.issn.1672-3961.0.2020.395

• • 上一篇    

基于全局最优的自适应和声搜索算法

周恺卿,李航程,莫礼平   

  1. 吉首大学信息科学与工程学院, 湖南 吉首 416000
  • 发布日期:2021-04-16
  • 作者简介:周恺卿(1984— ),男,湖南长沙人,博士(后),副教授,主要研究方向为临床辅助决策系统,模糊Petri网理论与应用,软计算技术. E-mail:kqzhou@jsu.edu.cn
  • 基金资助:
    国家自然科学基金(62066016);湖南省自然科学基金项目(2020JJ5458,2019JJ40234);湖南省教育厅科学研究项目(18B317,19A414);湖南省大学生创新创业训练计划项目(20180592)

Adaptive harmony search algorithm based on global optimization

ZHOU Kaiqing, LI Hangcheng, MO Liping   

  1. College of Computer Science and Engineering, Jishou University, Jishou 416000, Hunan, China
  • Published:2021-04-16

摘要: 针对传统和声算法收敛速度慢和搜索精度低等固有缺点,提出一种改进的自适应全局最优和声搜索算法。在即兴创作方案中,带宽由当前和声里的最优和声变量和最差和声变量之差表示,使得带宽具有针对具体情况的自适应能力,并且每次保存最优和声中一个随机和声变量。在产生的随机数大于和声记忆库存储考虑概率时,利用种群内差分随机生成一个和声变量。为了提高和声搜索算法的搜索能力,在即兴创作结束后产生一个新的和声的同时,再从当前种群中的最小和声到最大和声之间随机产生一个和声,然后将两个新产生和声中误差小的和声进入更新和声记忆库阶段。将所提出的算法与3个改进和声搜索算法在13个测试函数上进行对比。试验结果表明,提出的改进算法具有更好的全局搜索能力和收敛速度。

关键词: 和声搜索算法, 全局最优, 自适应, 差分, 测试函数

Abstract: An adaptive harmony search algorithm utilizing global optimal mechanism (AGOHS) was proposed to overcome the drawbacks of harmony search (HS) algorithm, such as slow convergence speed and low search accuracy. The modifications of AGOHS was classified into the following aspects. In the improvisation phase, the bandwidth (BW) was represented by the difference between the optimal harmony variable and the worst harmony variable in the current harmony, so that the BW had the ability to adapt to specific situations, and saved a random harmony variable in the optimal harmony every time. A novel harmony variable was generated randomly by using the intrapopulation difference while the obtained random number was greater than the reconciliation probability of harmony memory storage. To improve the search ability and the robustness, a novel harmony was randomly generated from the minimum value to the maximum value of harmony in the current population. The best harmony with the smallest error among the gained harmonies in this phase was selected and used to update the harmony memory. The proposed algorithm was compared with three improved harmony search algorithms on 13 test functions, experimental results revealed that the AGOHS had better global search capability and convergence speed.

Key words: harmony search algorithm, global optimal, adaptive, difference, testing function

中图分类号: 

  • TP391
[1] GEEM Z W, KIM J H, LOGANATHAN G V. A new heuristic optimization algorithm: harmony search[J]. Simulation, 2001, 76(2):60-68.
[2] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[3] PUGH J, SEGAPELLI L, MARTINOLI A. Ant colony optimization and swarm intelligence[J]. Lecture Notes in Computer Science, 2004, 49(8):767-771.
[4] LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3):281-295.
[5] LEE K S, GEEM Z W. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(36):3902-3933.
[6] KULLUK S, OZBAKIR L, BAYKASOGLU A. Training neural networks with harmony search algorithms for classification problems[J]. Engineering Applications of Artificial Intelligence, 2012, 25(1):11-19.
[7] MOAYEDIKIA A, ONG K L, BOO Y L, et al. Feature selection for high dimensional imbalanced class data using harmony search[J]. Engineering Applications of Artificial Intelligence, 2017, 57:38-49.
[8] BEIGZADEH M M B, ABOLGHASEM M S. Harmony search path detection for vision based automated guided vehicle[J]. Robotics and Autonomous Systems, 2018, 107:156-166.
[9] ROSLE M S, MOHAMAD M S, CHOON Y W, et al. A hybrid of particle swarm optimization and harmony search to estimate kinetic parameters in arabidopsis thaliana[J]. Processes, 2020, 8(8):1-12.
[10] OMRAN M G H, MAHDAVI M. Global-best harmony search[J]. Applied Mathematics and Computation, 2008, 198(2):643-656.
[11] PAN Q K, SUGANTHAN P N, TASGETIREN M F, et al. A self-adaptive global best harmony search algorithm for continuous optimization problems[J]. Applied Mathematics and Computation, 2010, 216(3): 830-848.
[12] ZOU Dexuan, GAO Liqun. A novel global harmony search algorithm for task assignment problem[J]. Journal of Systems and Software, 2010, 83(10):1678-1688.
[13] ZOU Dexuan, GAO Liqun. Novel global harmony search algorithm for unconstrained problems[J]. Neurocomputing, 2010, 73(16):3308-3318.
[14] WANG Lin, HU Huanlin, LIU Rui, et al. An improved differential harmony search algorithm for function optimization problems[J]. Soft Computing, 2019, 23(13):4827-4852.
[15] QIN A K, FORBES F. Harmony search with differential mutation based pitch adjustment[C] //Proceedings of the 13th annual conference on genetic and evolutionary computation.Berlin, Germany: ACM, 2011.
[16] ZHU Qidan, TANG Xiangmeng, LI Yong. An improved differential-based harmony search algorithm with linear dynamic domain[J]. Knowledge-Based Systems, 2020, 187:1-14.
[17] LI Hui, SHIH P C, ZHOU Xiaozhao. An improved novel global harmony search algorithm based on selective acceptance[J]. Appl Sci, 2020, 10(6):1-20.
[18] JAMIL M, YANG X S. A literature survey of benchmark functions for global optimization problems[J]. International Journal of Mathematical Modelling & Numerical Optimisation, 2013, 4(2):150-194.
[19] LAGUNA M, MARTI R. Experimental testing of advanced scatter search designs for global optimization of multimodal functions[J]. Journal of Global Optimi-zation, 2005, 33(2):235-255.
[20] GUO Zhaolu, WANG Shenwen, YUE Xuezhi, et al. Global harmony search with generalized opposition-based learning[J]. Soft Computing, 2017, 21(8):2129-2137.
[1] 武慧虹,钱淑渠,刘衍民,徐国峰,郭本华. 精英克隆局部搜索的多目标动态环境经济调度差分进化算法[J]. 山东大学学报 (工学版), 2021, 51(1): 11-23.
[2] 程春蕊,毛北行. 一类非线性混沌系统的自适应滑模同步[J]. 山东大学学报 (工学版), 2020, 50(5): 1-6.
[3] 王春彦,邸金红,毛北行. 基于新型趋近律的参数未知分数阶Rucklidge系统的滑模同步[J]. 山东大学学报 (工学版), 2020, 50(4): 40-45.
[4] 刘保成,朴燕,宋雪梅. 联合检测的自适应融合目标跟踪[J]. 山东大学学报 (工学版), 2020, 50(3): 51-57.
[5] 闫威,张达敏,张绘娟,辛梓芸,陈忠云. 基于混合决策的改进鸟群算法[J]. 山东大学学报 (工学版), 2020, 50(2): 34-43.
[6] 张胜男,王雷,常春红,郝本利. 基于三维剪切波变换和BM4D的图像去噪方法[J]. 山东大学学报 (工学版), 2020, 50(2): 83-90.
[7] 苏佳林,王元卓,靳小龙,程学旗. 自适应属性选择的实体对齐方法[J]. 山东大学学报 (工学版), 2020, 50(1): 14-20.
[8] 曹小洁,李小华,刘辉. 一类非仿射非线性大系统的结构在线扩展[J]. 山东大学学报 (工学版), 2020, 50(1): 35-48.
[9] 刘鸿斌,宋留. 废水处理过程的典型相关分析建模方法研究[J]. 山东大学学报 (工学版), 2020, 50(1): 101-108.
[10] 刘美珍,周风余,李铭,王玉刚,陈科. 基于模型不确定补偿的轮式移动机器人反演复合控制[J]. 山东大学学报 (工学版), 2019, 49(6): 36-44.
[11] 马川,刘彦呈,刘厶源,张勤进. 考虑未知死区非线性的自适应模糊神经UUV航迹跟踪控制[J]. 山东大学学报 (工学版), 2019, 49(3): 47-56.
[12] 李进,李二超. 基于正态分布和自适应变异算子的ε截断算法[J]. 山东大学学报 (工学版), 2019, 49(2): 47-53.
[13] 刘洪铭,曾鸿雁,周伟,王涛. 基于改进粒子群算法作业车间调度问题的优化[J]. 山东大学学报 (工学版), 2019, 49(1): 75-82.
[14] 公冶小燕,林培光,任威隆. 基于Grefenstette编码和2-opt优化的遗传算法[J]. 山东大学学报 (工学版), 2018, 48(6): 19-26.
[15] 李尧,王志海,孙艳歌,张伟. 一种基于深度属性加权的数据流自适应集成分类算法[J]. 山东大学学报 (工学版), 2018, 48(6): 44-55, 66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!