您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (1): 11-23.doi: 10.6040/j.issn.1672-3961.0.2020.050

• • 上一篇    

精英克隆局部搜索的多目标动态环境经济调度差分进化算法

武慧虹1,钱淑渠1*,刘衍民2,徐国峰3,郭本华1   

  1. 1. 安顺学院数理学院, 贵州 安顺 561000;2. 遵义师范学院数学学院, 贵州 遵义 563006;3. 南京工程学院计算中心, 江苏 南京 211167
  • 发布日期:2021-03-01
  • 作者简介:武慧虹(1980— ),女,山西太原人,副教授,硕士,主要研究方向为智能优化算法、群与图. E-mail:asuwhh@163.com. *通信作者简介:钱淑渠(1978— ),男,安徽枞阳人,教授,博士,主要研究方向为计算智能、系统建模与控制. E-mail:shuquqian@163.com
  • 基金资助:
    国家自然科学基金项目资助(61762001);贵州省教育厅创新群体重大项目资助(黔教合KY字[2019]069,[2018]034);贵州省科技计划联合基金项目资助(黔科合LH字[2017]7047号);贵州省平台人才项目资助(黔科HE字平台人才[2016]5619);贵州省教育厅青年科技人才成长项目(黔教合KY字[2020]146字);南京工程学院创新基金项目资助(CKJC201603)

Multiobjective dynamic economic emission dispatch differential evolution algorithm based on elites cloning local search

WU Huihong1, QIAN Shuqu1*, LIU Yanmin2, XU Guofeng3, GUO Benhua1   

  1. 1. School of Mathematics and Physics, Anshun University, Anshun 561000, Guizhou, China;
    2. School of Mathematics, Zunyi Normal University, Zunyi 563006, Guizhou, China;
    3. Computing Center, Nanjing Institute of Technology, Nanjing 211167, Jiangsu, China
  • Published:2021-03-01

摘要: 为有效解决复杂多目标动态环境经济调度问题,提出一种基于精英克隆局部搜索的多目标动态环境经济调度差分进化算法。以传统的差分进化(differential evolution, DE)算法为框架,为了提高DE算法的开采和探索能力,增设精英群的克隆和突变机制,采用动态选择方式确定精英群,有效增强算法的全局搜索能力。数值试验以IEEE-30的10机、15机系统为测试实例,并将提出的算法与三种代表性算法比较。结果表明,新算法所获的Pareto前沿具有较好的收敛性和延展性,可为电力系统调度人员提供更灵活的决策方案。

关键词: 动态环境经济调度, 多目标优化, 精英克隆, 差分进化, Pareto前沿

Abstract: An efficient multiobjective differential evolution algorithm based on elites cloning local search scheme was proposed to solve complex dynamic economic emission dispatch. The conventional differential evolution(DE)algorithm was used as the framework of the proposed algorithm. A cloning operator was developed to enhance the exploration and exploitation ability of elites in the DE algorithm. The elite population to be cloned was established by a dynamic selection mechanism for enhancing the global search ability of the proposed algorithm. To validate the effectiveness of the proposed algorithm, the IEEE 30 bus 10-generator and 15-generator systems were studies as test cases in numerical experiments. The simulation results indicated that the Pareto-optimal front obtained by the proposed algorithm presented a superior performance in convergence and extension over the other reported results recently. As a result, the results were able to provide decision solutions more extensively for decision-makers in power system dispatch.

Key words: dynamic economic emission dispatch, multiobjective optimization, elites cloning, differential evolution, Pareto-optimal front

中图分类号: 

  • TP306.2
[1] ZAMAN M F, ELSAYED S M, RAY T, et al. Evolutionary algorithms for dynamic economic dispatch problems[J]. Power Systems: IEEE Transactions on, 2016, 31(2):1486-1495.
[2] ZHANG Y, GONG D W, GENG N. Hybrid bare-bones PSO for dynamic economic dispatch with valve-point effects[J]. Applied Soft Computing, 2014, 18:248-260.
[3] LI X B. Study of multi-objective optimization and multi-attribute decision-making for dynamic economic emission dispatch[J]. Electric Power Components and Systems, 2009, 37(10):1133-1148.
[4] LI Z G, WU W C, ZHANG B M, et al. Dynamic economic dispatch using lagrangian relaxation with multiplier updates based on a Quasi-Newton method[J]. IEEE Transactions on Power Systems, 2013, 28(4):4516-4527.
[5] JEBARAJ L, VENKATESAN C, SOUBACHE I, et al. Application of differential evolution algorithm in static and dynamic economic or emission dispatch problem: a review[J]. Renewable and Sustainable Energy Reviews, 2017, 77(9):1206-1220.
[6] LI Z Y, ZOU D X, KONG Z. A harmony search variant and a useful constraint handling method for the dynamic economic emission dispatch problems considering transmission loss[J]. Engineering Applications of Artificial Intelligence, 2019, 84:18-40.
[7] BASU M. Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II[J]. International Journal of Electrical Power and Energy Systems, 2008, 30(2):140-149.
[8] QU B Y, ZHU Y S, JIAO Y C, et al. A survey on multi-objective evolutionary algorithms for the solution of the environmental/economic dispatch problems[J]. Swarm and Evolutionary Computation, 2018, 38:1-11.
[9] ELAIW A M, XIA X, SHEHATA A M. Hybrid DE-SQP and hybrid PSO-SQP methods for solving dynamic economic emission dispatch problem with valve-point effects[J]. Electrical Power System Research, 2013, 103:192-200.
[10] GILL P E, SAUNDERS M. An SQP algorithm for large-scale constrained optimization[J]. Siam Review, 2005, 47(1):99-131.
[11] ZHANG H F, YUE D, XIE X P, et al. Multi-elite guide hybrid differential evolution with simulated annealing technique for dynamic economic emission dispatch[J]. Applied Soft Computing, 2015, 34:312-323.
[12] ROY P K, BHUI S. A multi-objective hybrid evolutionary algorithm for dynamic economic emission load dispatch[J]. International Transactions on Electrical Energy Systems, 2015, 26(1):49-78.
[13] MASON K, DUGGAN J, HOWLEY E. A multi-objective neural network trained with differential evolution for dynamic economic emission dispatch[J]. International Journal of Electrical Power & Energy Systems, 2018, 100:201-221.
[14] SHEN X, ZOU D X, DUAN N, et al. An efficient fitness-based differential evolution algorithm and a constraint handling technique for dynamic economic emission dispatch[J]. Energy, 2019, 186:1-28.
[15] ZHU Y S, QIAO B H,DONG Y, et al. Multiobjective dynamic economic emission dispatch using evolutionary algorithm based on decomposition[J]. IEEJ Transactions on Electrical and Electronic Engineering, 2019, 14(4):1-11.
[16] 闫李, 李超, 柴旭朝, 等. 基于多学习多目标鸽群优化的动态环境经济调度[J]. 郑州大学学报(工学版), 2019, 40(4):8-14. YAN Li, LI Chao, CHAI Xuzhao, et al. Dynamic economic emission dispatch based on multiple learning multiobjective pigeon inspired optimization[J]. Journal of Zhengzhou University(Engineering Science), 2019, 40(4):8-14.
[17] 张大, 彭春华, 孙惠娟. 大规模风电机组并网的多目标动态环境经济调度[J]. 华东交通大学学报, 2019, 36(5):129-135. ZHANG Da, PENG Chunhua, SUN Huijuan. Multiobjective dynamic economic emission dispatch of large-scale wind power integration[J]. Journal of East China Jiaotong University, 2019, 36(5):129-135.
[18] STORN R, PRICE K. Differential Evolution: a simple and efficient adaptive scheme for global optimization over continuous spaces[J]. Journal of Global Optimization, 1995, 23(1):119-123.
[19] SARKER R, ABBASS H A. Differential evolution for solving multi-objective optimization problems[J]. ASIA Pacific Journal of Operational Research, 2004, 21(2):225-240.
[20] 钱淑渠,徐国峰,武慧虹, 等. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4):1-9. QIAN Shuqu, XU Guofeng, WU Huihong, et al. Immune clonal evolutionary algorithm of dynamic economic dispatch considering gas pollution emission[J]. Journal of Shandong University(Engineering Science), 2018, 48(4): 1-9.
[1] 杨冬,王世文,王勇,陈博,郑天茹,周宁,肖天,赵雅文. 并网型风电场扩展光伏互补发电容量优化配置[J]. 山东大学学报 (工学版), 2019, 49(5): 44-51.
[2] 孙润稼,朱海南,刘玉田. 基于偏好多目标优化和遗传算法的输电网架重构[J]. 山东大学学报 (工学版), 2019, 49(5): 17-23.
[3] 钱淑渠,武慧虹,徐国峰,金晶亮. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4): 1-9.
[4] 王飞,徐健,李伟,汪新浩,施啸寒. 基于分布式储能系统的风储滚动优化调度方法[J]. 山东大学学报(工学版), 2017, 47(6): 89-94.
[5] 裴小兵,陈慧芬,张百栈,陈孟辉. 改善式BVEDA求解多目标调度问题[J]. 山东大学学报(工学版), 2017, 47(4): 25-30.
[6] 邓冠龙,杨洪勇,张淑宁,顾幸生. 零等待flow shop多目标调度的混合差分进化算法[J]. 山东大学学报(工学版), 2016, 46(5): 21-28.
[7] 杨隆浩, 傅仰耿, 巩晓婷. 置信规则库参数学习的并行差分进化算法[J]. 山东大学学报(工学版), 2015, 45(1): 30-36.
[8] 刘淳安. 基于核分布估计的动态多目标优化进化算法[J]. 山东大学学报(工学版), 2011, 41(1): 167-172.
[9] 曲延鹏 陈颂英 杨新振 解富超 李文峰 宋秀琴. 低比转速离心泵叶轮几何参数多目标优化[J]. 山东大学学报(工学版), 2009, 39(3): 103-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!