您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (5): 70-76.doi: 10.6040/j.issn.1672-3961.0.2019.706

• • 上一篇    

基于BP神经网络的短期光伏集群功率区间预测

孙东磊1,王艳1,于一潇2*,韩学山2,杨明2,闫芳晴2   

  1. 1. 国网山东省电力公司经济技术研究院, 山东 济南 250021;2. 山东大学电气工程学院, 山东 济南 250061
  • 发布日期:2020-10-19
  • 作者简介:孙东磊(1988— ),男,山东济宁人,博士,高级工程师,主要研究方向为电力系统规划. E-mail:sdusdlei@sina.com. *通信作者简介:于一潇(1993— ),女,山东烟台人,硕士研究生,主要研究方向为电力系统控制优化与运行. E-mail: 201734290@mail.sdu.edu.cn

Interval prediction of short-term regional photovoltaic power based on BP neural network

SUN Donglei1, WANG Yan1, YU Yixiao2*, HAN Xueshan2, YANG Ming2, YAN Fangqing2   

  1. 1. Economic and Technology Research Institute, State Grid Shandong Electric Power Company, Jinan 250021, Shandong, China;
    2. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2020-10-19

摘要: 针对大规模光伏并网给电力系统安全稳定运行带来的严峻挑战,考虑传统单一光伏场站功率预测的局限性,以区域性光伏集群功率为研究对象,提出一种基于BP神经网络的光伏集群功率的区间预测方法。通过互信息方法对变量进行相关性分析,提取关键解释变量作为输入变量,利用主成分分析进行数据降维,解决了光伏集群功率预测大数据处理的问题。利用神经网络在数据挖掘和非线性关系拟合方面的优越性,将神经网络和非参数概率预测相结合,量化光伏集群功率预测结果的不确定性。实验算例采用中国某地区10个光伏场站,利用未降维的原始数据与本研究所提出的数据降维方法进行对比,分别计算80%和90%预测区间,结果表明,本研究所提出的预测方法预测区间带更窄,具有更好的预测效果。利用本研究所提模型预测了某天超前72 h的80%和90%置信区间,验证了该方法的可行性和先进性。

关键词: 光伏集群, 区间预测, BP神经网络, 数据降维, 主成分分析

Abstract: High penetration photovoltaic power brought severe challenges to the sage and stable operation of power systems. Considering the limitations of individual photovoltaic power prediction, this paper proposed an interval prediction method of regional photovoltaic power based on BP neural network, which extracted correlation through mutual information, and applied principal component analysis(PCA)to data dimensionality reduction. Taking the advantages of the data mining and nonlinear relation fitting for BP neural network, the uncertainty of regional photovoltaic power prediction could be quantified by the combining the neural networks and nonparametric probabilistic prediction methods. Experimental example used 10 photovoltaic plants in an area in China and compared the method of no data dimension reduction of original data with the proposed method in this paper. The 80% and 90% confidence intervals of the two models were calculated, which showed that the confidence intervals of the proposed mothed were narrower. At the same time, the proposed model predicted the 80% and 90% confidence intervals with 72 hours in advance, the results verified the feasibility and advance of the proposed method.

Key words: regional photovoltaic power, prediction intervals, BP neural network, dimensionality reduction, principal component analysis

中图分类号: 

  • TM60
[1] LIN You, YANG Ming, WAN Can, et al. A multi-model combination approach for probabilistic wind power forecasting[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1): 226-237.
[2] YANG Ming, FAN Shu, LEE W J. Probabilistic short-term wind power forecast using componential sparse bayesian learning[J]. IEEE Transactions on Industry Applications, 2013, 49(6):2783-2792.
[3] 赵争鸣,刘建政,孙晓英,等. 太阳能光伏发电其应用[M].北京:科学出版社, 2005.
[4] 代倩, 段善旭, 蔡涛, 等. 基于天气类型聚类识别的光伏系统短期无辐照度发电预测模型研究[J]. 中国电机工程学报, 2011, 31(34):28-35. DAI Qian, DUAN Shanxu, CAI Tao, et al. Short-term PV generation system forecasting model without irradiation based on weather type clustering[J]. Proceedings of the CSEE, 2011, 31(34): 28-35.
[5] RANA Mashud, IRENA Koprinska, AGELIDIS Vassilios G. Univariate and multivariate methods for very short-term solar photovoltaic power forecasting[J]. Energy Conversion and Management, 2016, 121:380-390.
[6] 赵唯嘉, 张宁, 康重庆, 等. 光伏发电出力的条件预测误差概率分布估计方法[J]. 电力系统自动化, 2015(16):8-15. ZHAO Weijia, ZHANG Ning, KANG Chongqing, et al. A method of probabilistic distribution estimation of conditional forecast error for photovoltaic power generation[J]. Automation of Electric Power Systems, 2015(16):8-15.
[7] 黄磊, 舒杰, 姜桂秀, 等. 基于多维时间序列局部支持向量回归的微网光伏发电预测[J]. 电力系统自动化, 2014, 38(5):19-24. HUANG Lei, SHU Jie, JIANG Guixiu, et al. Photovoltaic generation forecast based on multidimensional time-series and local support vector regression in microgrids[J]. Automation of Electric Power Systems, 2014, 38(5):19-24.
[8] 戴锦, 肖文波, 胡芳雨, 等. 光伏发电性能物理预测模型的研究[J]. 电源技术, 2018,42(2): 262-266. DAI Jin, XIAO Weibo, HU Fangyu, et al. Research of photovoltaic prediction model[J]. Power Supply Technology, 2018, 42(2): 262-266.
[9] 王育飞, 付玉超, 孙路, 等. 基于混沌-RBF神经网络的光伏发电功率超短期预测模型[J]. 电网技术, 2018,42(4):1110-1116. WANG Yufei, FU Yuchao, SUN Lu, et al. Ultra-short term prediction model of photovoltaic output power based on chaos-RBF neural network[J]. Power System Technology, 2018, 42(4):1110-1116.
[10] 茆美琴, 龚文剑, 张榴晨, 等. 基于EEMD-SVM方法的光伏电站短期出力预测[J]. 中国电机工程学报, 2013,33(34):17-24. MAO Meiqin, GONG Wenjian, ZHANG Liuchen, et al. Short-term photovoltaic generation forecasting based on EEMD-SVM combined method[J]. Proceedings of the CSEE, 2013, 33(34):17-24.
[11] ALHAKEEM D, MANDAL P, HAQUE A U, et al. A new strategy to quantify uncertainties of wavelet-GRNN-PSO based solar PV power forecasts using bootstrap confidence intervals[C] //Power and Energy Society General Meeting. Denver, USA: IEEE, 2015.
[12] TED Soubdhan, JOSEPH Ndong, HANANY Ould-Baba, et al. A robust forecasting framework based on the kalman filtering approach with a twofold parameter tuning procedure: application to solar and photovoltaic prediction[J]. Solar Energy, 2016, 131:246-259.
[13] ZAMO M, MESTRE O, ARBOGAST P, et al. A benchmark of statistical regression methods for short-term forecasting of photovoltaic electricity production: part II: probabilistic forecast of daily production[J]. Solar Energy, 2014, 105:804-816.
[14] 颜伟, 任洲洋, 赵霞, 等. 光伏电源输出功率的非参数核密度估计模型[J]. 电力系统自动化, 2013, 37(10):35-40. YAN Wei, REN Zhouyang, ZHAO Xia, et al. Probabilistic photovoltaic power modeling based on nonparametric kernel density estimation[J]. Automation of Electric Power Systems, 2013, 37(10):35-40.
[15] SCOLARI E, SOSSAN F, PAOLONE M. Irradiance prediction intervals for PV stochastic generation in microgrid applications[J]. Solar Energy, 2016, 139:116-129.
[16] 殷豪, 陈云龙, 孟安波, 等. 基于模糊信息粒化的光伏出力区间预测[J]. 电测与仪表, 2017, 55(14): 39-44. YIN Hao, CHEN Yunlong, MENG Anbo, et al. PV power interval prediction based on fuzzy information granulation[J]. Electrical Measurement & Instrumentation, 2017, 55(14): 39-44.
[17] 谭津, 邓长虹, 杨威, 等. 微电网光伏发电的Adaboost天气聚类超短期预测方法[J]. 电力系统自动化, 2017(21):39-45. TAN Jin, DENG Changhong, YANG Wei, et al. Ultra-short-term photovoltaic power forecasting in microgrid based on adaboost clustering[J]. Automation of Electric Power Systems, 2017(21):39-45.
[18] DOLARA A, LEVA S, MANZOLINI G. Comparison of different physical models for PV power output prediction[J]. Solar Energy, 2015, 119: 83-99.
[19] URQUHART B, KURTZ B, DAHLIN E, et al. Development of a sky imaging system for short-term solar power forecasting[J]. Atmospheric Measurement Techniques, 2015, 8(2):875-890.
[20] 董雷, 周文萍, 张沛, 等. 基于动态贝叶斯网络的光伏发电短期概率预测[J]. 中国电机工程学报, 2013, 33(增刊):38-45. DONG Lei, ZHOU Wenping, ZHANG Pei, et al. Short-term photovoltaic output forecast based on dynamic Bayesian network theory[J]. Proceedings of the CESS, 2013, 33(Suppl.):38-45.
[21] 朱雪龙. 应用信息论基础[M]. 北京:清华大学出版社, 2001.
[1] 金保明,卢光毅,王伟,杜伦阅. 基于弹性梯度下降算法的BP神经网络降雨径流预报模型[J]. 山东大学学报 (工学版), 2020, 50(3): 117-124.
[2] 郑店坤,许同乐,尹召杰,孟庆民. 改进PSO-BP神经网络对尾矿坝地下水位的预测方法[J]. 山东大学学报 (工学版), 2019, 49(3): 108-113.
[3] 杨亚楠,夏斌,谢楠,袁文浩. 基于BP神经网络和多元Taylor级数的混合定位算法[J]. 山东大学学报 (工学版), 2019, 49(1): 36-40.
[4] 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83.
[5] 马相明,孙霞,张强. 轮式装载机典型作业工况构建与分析[J]. 山东大学学报 (工学版), 2015, 45(5): 82-87.
[6] 李发权, 杨立才, 颜红博. 基于PCA-SVM多生理信息融合的情绪识别方法[J]. 山东大学学报(工学版), 2014, 44(6): 70-76.
[7] 刘海青,杨立才*,吴磊,孔璐璐. 基于Fuzzy-PCA的城市区域交通拥挤评价方法[J]. 山东大学学报(工学版), 2012, 42(6): 56-62.
[8] 翟俊海1,翟梦尧1,张素芳2,王熙照1. 基于小波子空间集成的人脸识别[J]. 山东大学学报(工学版), 2012, 42(2): 1-6.
[9] 颜子夜,陆耀,李建武,马跃. 一种基于核主成分分析的图像超分辨率算法[J]. 山东大学学报(工学版), 2011, 41(4): 101-105.
[10] 曾雪强1,李国正2. 基于偏最小二乘降维的分类模型比较[J]. 山东大学学报(工学版), 2010, 40(5): 41-47.
[11] 贺广南,杨育彬*. 基于流形学习的图像检索算法研究[J]. 山东大学学报(工学版), 2010, 40(5): 129-136.
[12] 姚福安,庞向坤,焦营营,王忠林,张锡满 . 基于三色法和BP神经网络的回转窑温度检测[J]. 山东大学学报(工学版), 2008, 38(2): 61-65 .
[13] 高小伟,蒋晓芸 . BP神经网络在入侵检测系统中的应用及优化[J]. 山东大学学报(工学版), 2006, 36(6): 107-110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!