山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (3): 15-23.doi: 10.6040/j.issn.1672-3961.0.2019.305
Gaoteng YUAN1(),Yihui LIU1,*(
),Wei HUANG2,Bing HU3
摘要:
为研究乳腺肿瘤核磁(Magnetic Resonance,MR)图像纹理分析在鉴别乳腺纤维瘤(fibroadenoma of breast, FB)、浸润性导管癌(invasive ductal carcinoma, IDC)和浸润性小叶癌(invasive lobular carcinoma, ILC)中的临床应用价值,选择MR图像的兴趣区域并使用小波变换对MR图像进行分解,结合K-means算法完成对肿瘤区域的勾画。使用Gabor小波从8个方向、5个尺度对兴趣区域滤波,并将肿瘤部位的均值作为特征。对提取的特征进行分析、筛选,得到关键特征。比较支持向量机、贝叶斯、神经网络等不同的分类算法对关键特征进行分类预测,计算分类的准确度、灵敏度和特异性,得到最适用于分类模型的参数设置。乳腺MR图像纹理分析能够区分出常见的三类乳腺肿瘤,预测精度为77.36%。乳腺MR图像在鉴别FB、IDC和ILC方面具有重要的临床价值。
中图分类号:
1 | MCGRATH S E , RING A . Chemotherapy for breast cancer in pregnancy: evidence and guidance for oncologists[J]. Therapeutic Advances in Medical Oncology, 2011, 3 (2): 73- 83. |
2 | 郑莹, 吴春晓, 张敏璐. 乳腺癌在中国的流行状况和疾病特征[J]. 中国癌症杂志, 2013, 23 (8): 561- 569. |
ZHENG Ying , WU Chunxiao , ZHANG Minlu . The epidemic and characteristics of female breast cancer in China[J]. China Oncology, 2013, 23 (8): 561- 569. | |
3 | 李明慧, 柳莉莎. 超声弹性成像评分标准对乳腺良恶性肿块的诊断价值[J]. 肿瘤, 2011, 31 (5): 453- 456. |
LI Minghui , LIU Lisha . The diagnostic value of ultrasonic elastography in identifying malignancies of breast diseases[J]. Tumor, 2011, 31 (5): 453- 456. | |
4 | 唐玮, 刘剑仑, 杨华伟, 等. 整形保乳术与常规保乳术在早期乳腺癌治疗中的比较分析[J]. 中国肿瘤临床, 2016, 43 (6): 235- 239. |
TANG Wei , LIU Jianlun , YANG Huawei , et al. Clinical comparative study of oncoplastic and standard breast-conserving surgery in the treatment of early breast cancer[J]. Chinese Journal of Clinical Oncology, 2016, 43 (06): 235- 239. | |
5 | O'SULLIVAN T D , LEPROUX A , CHEN J H , et al. Optical imaging correlates with magnetic resonance imaging breast density and reveals composition changes during neoadjuvant chemotherapy[J]. Breast Cancer Research, 2013, 15 (1): 14. |
6 | SUTTON E J , DASHEVSKY B Z , OH J H , et al. Breast cancer molecular subtype classifier that incorporates MRI features[J]. Journal of Magnetic Resonance Imaging, 2016, 44 (1): 122- 129. |
7 | 刘丽, 赵凌君, 郭承玉, 等. 图像纹理分类方法研究进展和展望[J]. 自动化学报, 2018, 44 (4): 584- 607. |
LIU Li , ZHAO Lingjun , GUO Chengyu , et al. Texture classification: state-of-the-art methods and prospects[J]. Acta Automatica Sinica, 2018, 44 (4): 584- 607. | |
8 | ZACHARAKI EI , WANG S , CHAWLA S , et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme[J]. Magnetic Resonance in Medicine, 2010, 62 (6): 1609- 1618. |
9 | LIU Yihui , MUFTAH M , DAS T , et al. Classification of MR tumor images based on Gabor wavelet analysis[J]. Journal of Medical & Biological Engineering, 2012, 32 (1): 22- 28. |
10 | PAN Y, HUANG W, LIN Z, et al. Brain tumor grading based onneural networks and convolutional neural networks[C]// Conf Proc IEEE Eng Med Biol Soc, (2015).[S.l.]: [s.n.], 2015: 699-702. |
11 | KOOI T , LITJENS G , GINNEKEN B V , et al. Large scale deep learning for computer aided detection of mammographic lesions[J]. Medical Image Analysis, 2017, 35, 303- 312. |
12 | MERCKEL L G , VERKOOIJEN H M , PETERS N H G M , et al. Theadded diagnostic value of dynamic contrast-enhanced MRI at 3.0 T in nonpalpable breast lesions[J]. Plos One, 2014, 9 (4): e94233. |
13 | MICHAUT M , CHIN S F , MAJEWSKI I , et al. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes ofinvasive lobular breast cancer[J]. Sci Rep, 2016, 6, 18517. |
14 | ULANER G A , GOLDMAN D , GONEN M , et al. Initial results of a prospective clinical trial of 18F-Fluciclovine PET/CT in newly diagnosed invasive ductal and invasive lobular breast cancers[J]. Journal of Nuclear Medicine, 2016, 57 (9): 1350. |
15 | 陈波, 张磊. 2017年乳腺癌新辅助治疗进展[J]. 山东大学学报(医学版), 2018, 56 (1): 12- 16. |
CHEN Bo , ZHANG Lei . Current perspectives of neoadjuvant therapy for breast cancer in 2017[J]. Journal of Shandong University (Health Sciences), 2018, 56 (1): 12- 16. | |
16 | CHEN Yunmei , YE Xiaojing , HUANG Feng , et al. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data[J]. Inverse Problems & Imaging, 2017, 4 (2): 223- 240. |
17 | ACHARYA U R , MOOKIAH M R , KOH J E , et al. Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features[J]. Computers in Biology & Medicine, 2016, 73 (C): 131- 140. |
18 | 刘慧, 王小宜, 龙学颖. 基于CT图像纹理分析肿瘤异质性的研究进展及应用[J]. 国际医学放射学杂志, 2016, 39 (5): 543- 548. |
LIU Hui , WANG Xiaoyi , LONG Xueying . Research progress and clinical application of tumor heterogeneity based on CT texture analysis[J]. International Journal of Medical Radiology, 2016, 39 (5): 543- 548. | |
19 | HUANG Xiuchang, SU Wei. An improved K-means clustering algorithm[C]// World Automation Congress. Hawaii, USA: Journal of Networks, 2014, 9(1): 161-167. |
20 | 范春年, 张福炎. Gabor相位特征的人脸光照不变量提取[J]. 中国图象图形学报, 2012, 17 (5): 676- 681. |
FAN Chunnian , ZHANG Fuyan . Illumination invariant extraction on Gabor phase[J]. Journal of Image and Graphics, 2012, 17 (5): 676- 681. | |
21 | KAY S , QUAN D , BO T , et al. Probability density function estimation using the EEF With application to subset/feature selection[J]. IEEE Transactions on Signal Processing, 2016, 64 (3): 641- 651. |
22 | 侯霄雄, 许新征, 朱炯, 等. 基于AlexNet和集成分类器的乳腺癌计算机辅助诊断方法[J]. 山东大学学报(工学版), 2019, 49 (2): 74- 79. |
HOU Xiaoxiong , XU Xinzheng , ZHU Jiong , et al. Computer aided diagnosis method for breast cancer based on AlexNet and ensemble classifiers[J]. Journal of Shandong University(Engineering Science), 2019, 49 (2): 74- 79. |
[1] | 张大鹏,刘雅军,张伟,沈芬,杨建盛. 基于异质集成学习的虚假评论检测[J]. 山东大学学报 (工学版), 2020, 50(2): 1-9. |
[2] | 高铭壑,张莹,张蓉蓉,黄子豪,黄琳焱,李繁菀,张昕,王彦浩. 基于预测数据特征的空气质量预测方法[J]. 山东大学学报 (工学版), 2020, 50(2): 91-99. |
[3] | 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8. |
[4] | 李童,马然,郑鸿鹤,安平,胡翔宇. 基于视频统计特征的差错敏感度模型[J]. 山东大学学报 (工学版), 2019, 49(2): 116-121. |
[5] | 邹启杰,李昊宇,张汝波,裴腾达,刘艳. 自主驾驶的人机交互控制[J]. 山东大学学报 (工学版), 2019, 49(2): 23-33. |
[6] | 张冕,黄颖,梅海艺,郭毓. 基于Kinect的配电作业机器人智能人机交互方法[J]. 山东大学学报 (工学版), 2018, 48(5): 103-108. |
[7] | 刘洋,刘博,王峰. 基于Parameter Server框架的大数据挖掘优化算法[J]. 山东大学学报(工学版), 2017, 47(4): 1-6. |
[8] | 魏波,张文生,李元香,夏学文,吕敬钦. 一种选择特征的稀疏在线学习算法[J]. 山东大学学报(工学版), 2017, 47(1): 22-27. |
[9] | 周旺,张晨麟,吴建鑫. 一种基于Hartigan-Wong和Lloyd的定性平衡聚类算法[J]. 山东大学学报(工学版), 2016, 46(5): 37-44. |
[10] | 孟令恒,丁世飞. 基于单静态图像的深度感知模型[J]. 山东大学学报(工学版), 2016, 46(3): 37-43. |
[11] | 刘杰, 杨鹏, 吕文生, 刘阿古达木, 刘俊秀. 基于气象因素的PM2.5质量浓度预测模型[J]. 山东大学学报(工学版), 2015, 45(6): 76-83. |
[12] | 肖乔,裴继红,王荔霞,龚志成. 基于多通道Gabor滤波模糊融合的遥感图像舰船检测[J]. 山东大学学报 (工学版), 2015, 45(5): 29-35. |
[13] | 郑毅, 朱成璋. 基于深度信念网络的PM2.5预测[J]. 山东大学学报(工学版), 2014, 44(6): 19-25. |
[14] | 谢琳1,殷熙尧2,李凡长3,吴佳3. 一种逆归结学习表示[J]. 山东大学学报(工学版), 2013, 43(4): 46-50. |
[15] | 何雪英1,2, 秦伟1, 尹义龙1*, 赵联征1,乔昊3. 基于机器学习的视频指纹识别[J]. 山东大学学报(工学版), 2011, 41(4): 29-33. |
|