山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (2): 60-65.doi: 10.6040/j.issn.1672-3961.0.2019.760
Chao FENG1,2(),Kunpeng XU1,2,Lifei CHEN1,2,*()
摘要:
针对现有序列挖掘算法特征维度高、学习算法时间复杂度高等方面的不足,提出一种主题特征表示法,将符号序列转换为一组表示多个主题呈现度的概率向量。基于文本挖掘中常用的隐含狄利克雷分配(latent Dirichlet allocation, LDA)主题模型,视短序列元组为序列的浅层特征(词),利用LDA模型学习算法提取主题及其概率分布,作为序列的深层特征。在6个实际序列数据集上进行试验,并与基于元组、Markov模型的现有方法作对比,结果表明,新方法在降低特征维度的同时提高了表示模型的学习效率,在符号序列分类应用中可以取得较理想的分类精度。
中图分类号:
1 | DONG G , PEI J . Sequence data mining[M]. Berlin: Springer, 2007: Ⅶ- 69. |
2 |
BENGIO Y , COURVILLE A , VINCENT P . Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intellig-ence, 2013, 35 (8): 1798- 1828.
doi: 10.1109/TPAMI.2013.50 |
3 | COVER T M , HART P E . Nearest neighborpatternclassification[J]. IEEE Transactions on Information Theory, 1967, 13 (1): 21- 27. |
4 |
XING Z , PEI J , KEOGH E J . A brief survey on sequence classification[J]. ACM SIGKDD Explorations Newsletter, 2010, 12 (1): 40- 48.
doi: 10.1145/1882471.1882478 |
5 | BLASIAK S, RANGWALA H. A hidden Markov model variant for sequence classification[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence. Barcelona, Catalonia, Spain: IJCAI, 2011: 1192-1197. |
6 | 郭彦明.基于隐马尔可夫模型的DNA序列分类研究[D].福州:福建师范大学, 2015. |
GUO Yanming. A study of DNA sequence classification based on hidden Markov model[D]. Fuzhou: Fujian Normal University, 2015. | |
7 |
GUO G , CHEN L , YE Y , et al. Cluster validation method for determining the number of clusters in categorical sequences[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (12): 2936- 2948.
doi: 10.1109/TNNLS.2016.2608354 |
8 |
YUAN L , WANG W , CHEN L . Two-stage pruning method for gram-based categorical sequence clustering[J]. International Journal of Machine Learning and Cybernetics, 2019, 10 (4): 631- 640.
doi: 10.1007/s13042-017-0744-y |
9 |
GERS F A , SCHMIDHUBER J , Cummins F . Learning toforget: continual prediction with LSTM[J]. Neural Computation, 2000, 12 (10): 2451- 2471.
doi: 10.1162/089976600300015015 |
10 |
GREFF K , SRIVASTAVA R K , KOUTNIK J , et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (10): 2222- 2232.
doi: 10.1109/TNNLS.2016.2582924 |
11 | GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. Vancouver, Canada: IEEE, 2013: 6645-6649. |
12 | TANG D, QIN B, LIU T. Document modeling with gated recurrent neural network for sentiment classification[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Lisbon, Portugal: ACL, 2015: 1422-1432. |
13 | JEBARA T , KONDOR R I , HOWARD A . Probability product kernels[J]. Journal of Machine Learning Research, 2004, 5 (5): 819- 844. |
14 |
SALTON G . A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18 (11): 613- 620.
doi: 10.1145/361219.361220 |
15 | XIONG T, WANG S, JIANG Q. A new Markov Model for clustering categorical sequences[C]//Proceedings of the 11th IEEE International Conference on Data Mining. Vancouver, Canada: IEEE Computer Society, 2011: 854-863. |
16 | 程铃钫, 郭躬德, 陈黎飞. 符号序列多阶Markov分类[J]. 计算机应用, 2017, 37 (7): 1977- 1982. |
CHENG Lingfang , GUO Gongde , CHEN Lifei . Classification of symbolic sequences with multi-order Markov Model[J]. Journal of Computer Applications, 2017, 37 (7): 1977- 1982. | |
17 |
郭彦明, 陈黎飞, 郭躬德. 基于隐马尔科夫模型的DNA序列分类方法[J]. 计算机系统应用, 2014, 23 (7): 24- 30.
doi: 10.3969/j.issn.1003-3254.2014.07.005 |
GUO Yanming , CHEN Lifei , GUO Gongde . DNA sequence classification method based on Hidden Markov Model[J]. Computer Systems & Applications, 2014, 23 (7): 24- 30.
doi: 10.3969/j.issn.1003-3254.2014.07.005 |
|
18 | 周玉元, 周铁军. DNA序列分类的Fisher判别法[J]. 湖南农业大学学报(自然科学版), 2003, 29 (5): 437- 440. |
ZHOU Yuyuan , ZHOU Tiejun . The Fisher criterion on classification of the DNA sequence[J]. Journal of Hunan Agricultural University (Natural Sciences), 2003, 29 (5): 437- 440. | |
19 | DAI A M , LE Q V . Semi-supervised sequence learning[J]. Advances in Neural Information Processing Systems, 2015, 3079- 3087. |
20 | GRAVES A, JAITLY N, MOHAMED A R. Hybrid speech recognition with deep Bidirectional LSTM[C]//Proceedings of 2013 IEEE Workshop on Automatic Speech Recognition and Understanding. Olomouc, Czech Republic: IEEE, 2013: 273-278. |
21 |
DEERWESTER S , DUMAIS S T , LANDAUER T K , et al. Indexing by Latent Semantic Analysis[J]. Journal of the American Society for Information Science, 1990, 41 (6): 391- 407.
doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 |
22 | THOMAS H. Probabilisticlatent semantic analysis[C]//Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence. Stockholm, Sweden: Morgan Kaufmann, 1999: 289-296. |
23 | BLEI D M , NG A Y , JORDAN M I . Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3, 993- 1022. |
24 | GRIFFITHS T L , STEYVERS M . Finding scientific topics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101 (1): 5228- 5235. |
25 | KELIL A, WANG S. SCS: a new similarity measure for categorical sequences[C]// Proceedings of the 8th IEEE International Conference on Data Mining. Pisa, Italy: IEEE Computer Society, 2008: 343-352. |
26 | WEI D , JIANG Q , WEI Y , et al. A novel hierarchical clustering algorithm for gene sequences[J]. BMC Bioinformatics, 2012, 13 (1): 174- 186. |
[1] | 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33. |
[2] | 李春阳,李楠,冯涛,王朱贺,马靖凯. 基于深度学习的洗衣机异常音检测[J]. 山东大学学报 (工学版), 2020, 50(2): 108-117. |
[3] | 陈馨菂,李天瑞,杨欢欢. 基于时间序列数据的交互式主题河流可视化[J]. 山东大学学报 (工学版), 2019, 49(4): 29-35, 43. |
[4] | 张红斌,邱蝶蝶,邬任重,朱涛,滑瑾,姬东鸿. 基于极端梯度提升树算法的图像属性标注[J]. 山东大学学报 (工学版), 2019, 49(2): 8-16. |
[5] | 高明霞,李经纬. 基于word2vec词模型的中文短文本分类方法[J]. 山东大学学报 (工学版), 2019, 49(2): 34-41. |
[6] | 侯霄雄,许新征,朱炯,郭燕燕. 基于AlexNet和集成分类器的乳腺癌计算机辅助诊断方法[J]. 山东大学学报 (工学版), 2019, 49(2): 74-79. |
[7] | 朱映雪,黄瑞章,马灿. 一种具有新主题偏向性的短文本动态聚类方法[J]. 山东大学学报 (工学版), 2018, 48(6): 8-18. |
[8] | 屈庆涛,刘其成,牟春晓. 基于N-Gram语言模型的并行自适应新闻话题追踪算法[J]. 山东大学学报 (工学版), 2018, 48(6): 37-43. |
[9] | 李尧,王志海,孙艳歌,张伟. 一种基于深度属性加权的数据流自适应集成分类算法[J]. 山东大学学报 (工学版), 2018, 48(6): 44-55, 66. |
[10] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报 (工学版), 2018, 48(5): 47-54. |
[11] | 王换,周忠眉. 一种基于聚类的过抽样算法[J]. 山东大学学报(工学版), 2018, 48(3): 134-139. |
[12] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
[13] | 曹雅,邓赵红,王士同. 基于单调约束的径向基函数神经网络模型[J]. 山东大学学报(工学版), 2018, 48(3): 127-133. |
[14] | 龙柏,曾宪宇,李徵,刘淇. 电商商品嵌入表示分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 17-24. |
[15] | 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39. |
|