山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (2): 66-75.doi: 10.6040/j.issn.1672-3961.0.2019.304
Wenkai ZHANG(),Ke YU,Xiaofei WU
摘要:
基于异构信息网络(heterogeneous information networks, HIN)中元图的良好表征特性,提出一种结合隐式反馈和PathSim(meta path-based similarity)的归一化相似性度量(normalized similarity measure of meta graph, NSMG),以解决对异构信息网络中高度可见实体的偏好问题。针对Yelp和Amazon数据集构建Yelp-HIN(heterogeneous information networks in Yelp)和Amazon-HIN(heterogeneous information networks in Amazon),定义不同类型的元图及归一化相似度量,使用矩阵分解和因子分解机来组合计算不同元图上的相似性。试验结果表明,基于NSMG的方法在非常稀疏的数据集上性能表现优于常用的HIN实体推荐方法。
中图分类号:
1 | ZHAO H, YAO Q M, LI J D, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, Canada: ACM, 2017: 635-644. |
2 |
SHI C , LI Y T , ZHANG J W , et al. A survey of heterogeneous information network analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29 (1): 17- 37.
doi: 10.1109/TKDE.2016.2598561 |
3 | JEH G, WIDOM J. Scaling personalized web search[C]//Proceedings of the 12th international conference on World Wide Web. Budapest, Hungary: ACM, 2003: 271-279. |
4 | 郑玉艳, 田莹, 石川. 一种元路径下基于频繁模式的实体集扩展方法[J]. 软件学报, 2018, 29 (10): 2915- 2930. |
ZHENG Yuyan , TIAN ying , SHI Chuan . Method of entity set expansion based on frequent pattern under meta path[J]. Journal of Software, 2018, 29 (10): 2915- 2930. | |
5 | 黄立威, 李德毅, 马于涛, 等. 一种基于元路径的异质信息网络链路预测模型[J]. 计算机学报, 2014, 37 (4): 848- 858. |
HUANG Liwei , LI Deyi , MA Yutao , et al. A meta path-based link prediction model for heterogeneous information networks[J]. Chinese Journal of Computers, 2014, 37 (4): 848- 858. | |
6 | 盛权为, 汪一百, 高阳. 一种改进的异构链路协同预测算法研究[J]. 计算机工程与应用, 2017, 53 (15): 155- 163. |
SHENG Quanwei , WANG Yibai , GAO Yang . Research on improved algorithm for collaborative prediction of heterogeneous links[J]. Computer Engineering and Applications, 2017, 53 (15): 155- 163. | |
7 | SUN Y Z , HAN J W , YAN X F , et al. Pathsim: meta path-based top-k similarity search in heterogeneous information networks[J]. Proceedings of the VLDB Endowment, 2011, 4 (11): 992- 1003. |
8 |
SHI C , KONG X N , HUANG Y , et al. Hetesim: a general framework for relevance measure in heterogeneous networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26 (10): 2479- 2492.
doi: 10.1109/TKDE.2013.2297920 |
9 | HUANG Z P, ZHENG Y D, CHENG R, et al. Meta structure: computing relevance in large heterogeneous information networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA: ACM, 2016: 1595-1604. |
10 | YU X, REN X, SUN Y Z, et al. Recommendation in heterogeneous information networks with implicit user feedback[C]//Proceedings of the 7th ACM conference on Recommender systems. Hong Kong, China: ACM, 2013: 347-350. |
11 | YU X, REN X, SUN Y Z, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proceedings of the 7th ACM international conference on Web search and data mining. New York, USA: ACM, 2014: 283-292. |
12 |
SHI C , LIU J , ZHUANG F Z , et al. Integrating heterogeneous information via flexible regularization framework for recommendation[J]. Knowledge and Information Systems, 2016, 49 (3): 835- 859.
doi: 10.1007/s10115-016-0925-0 |
13 | ZHENG J, LIU J, SHI C, et al. Dual similarity regularization for recommendation[C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. Auckland, New Zealand: Springer, 2016: 542-554. |
14 | JAMALI M, LAKSHMANAN L. HeteroMF: recommendation in heterogeneous information networks using context dependent factor models[C]// Proceedings of the 22nd International Conference on World Wide Web. Rio de Janeiro, Brazil: ACM, 2013: 643-654. |
15 | XIE F, CHEN L, YE Y, et al. A weighted meta-graph based approach for mobile application recommendation on heterogeneous information networks[C]//International Conference on Service-Oriented Computing. Hangzhou, China: Springer, 2018: 404-420. |
16 | ZHENG J, LIU J, SHI C, et al. Dual similarity regularization for recommendation[C]// Pacific-Asia Conference on Knowledge Discovery and Data Mining. Auckland, New Zealand: Springer, 2016: 542-554. |
17 |
KOREN Y , BELL R , VOLINSKY C . Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42 (8): 30- 37.
doi: 10.1109/MC.2009.263 |
18 | SHI C, ZHOU C, KONG X N, et al. Heterecom: a semantic-based recommendation system in heterogeneous networks[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing, China: ACM, 2012: 1552-1555. |
19 | SHI C, ZHANG Z Q, LUO P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne, Australia: ACM, 2015: 453-462. |
20 | BURKE R, VAHEDIAN F, MOBASHER B. Hybrid recommendation in heterogeneous networks[C]//International Conference on User Modeling, Adaptation, and Personalization. Aalborg, Denmark: Springer, 2014: 49-60. |
21 | 王瑜, 武延军, 吴敬征, 等. 基于异构网络面向多标签系统的推荐模型研究[J]. 软件学报, 2017, 28 (10): 2611- 2624. |
WANG Yu , WU Yanjun , WU Jingzheng , et al. Multi-Dimensional tag recommender model via heterogeneous networks[J]. Journal of Software(in Chinese), 2017, 28 (10): 2611- 2624. | |
22 |
王永, 邓永恒, 李晓光. 考虑非对称用户偏好的推荐算法[J]. 计算机工程与应用, 2018, 54 (23): 1- 6.
doi: 10.3778/j.issn.1002-8331.1809-0322 |
WANG Yong , DENG Yongheng , LI Xiaoguang . Asymmetric recommendation algorithm based on user preference[J]. Computer Engineering and Applications, 2018, 54 (23): 1- 6.
doi: 10.3778/j.issn.1002-8331.1809-0322 |
|
23 | 戴琳, 孟祥武, 张玉洁, 等. 一种融合多种数据信息的餐馆推荐模型[J]. 软件学报, 2019, 30 (9): 2869- 2885. |
DAI Lin , MENG Xiangwu , ZHANG Yujie , et al. A restaurant recommendation model with multiple information fusion[J]. Journal of Software(in Chinese), 2019, 30 (9): 2869- 2885. | |
24 |
YUAN M , LIN Y . Model selection and estimation in regression with grouped variables[J]. Journal of the Royal Statistical Society: Series B:Statistical Methodology, 2006, 68 (1): 49- 67.
doi: 10.1111/j.1467-9868.2005.00532.x |
25 | LI H, LIN Z. Accelerated proximal gradient methods for nonconvex programming[C]//Advances in Neural Information Processing Systems. Montreal, Canada: NIPS, 2015: 379-387. |
[1] | 黄丹,王志海,刘海洋. 一种局部协同过滤的排名推荐算法[J]. 山东大学学报(工学版), 2016, 46(5): 29-36. |
[2] | 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73. |
[3] | 李国栋,赵威,田国会*,薛英花. 一种基于旋转矩阵分解的视觉伺服控制算法[J]. 山东大学学报(工学版), 2012, 42(1): 45-50. |
|