您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (2): 34-43.doi: 10.6040/j.issn.1672-3961.0.2019.294

• 机器学习与数据挖掘 • 上一篇    下一篇

基于混合决策的改进鸟群算法

闫威(),张达敏*(),张绘娟,辛梓芸,陈忠云   

  1. 贵州大学大数据与信息工程学院, 贵州 贵阳 550025
  • 收稿日期:2019-06-10 出版日期:2020-04-20 发布日期:2020-04-16
  • 通讯作者: 张达敏 E-mail:349552812@qq.com;1203813362@qq.com
  • 作者简介:闫威(1993—),男,贵州贵阳人,硕士研究生,主要研究方向为网络通信,优化计算. E-mail:349552812@qq.com
  • 基金资助:
    贵州省自然科学基金资助项目(黔科合基础[2017]1047号)

Improved bird swarm algorithms based on mixed decision making

Wei YAN(),Damin ZHANG*(),Huijuan ZHANG,Ziyun XI,Zhongyun CHEN   

  1. College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, Guiyang, China
  • Received:2019-06-10 Online:2020-04-20 Published:2020-04-16
  • Contact: Damin ZHANG E-mail:349552812@qq.com;1203813362@qq.com
  • Supported by:
    贵州省自然科学基金资助项目(黔科合基础[2017]1047号)

摘要:

针对鸟群算法(bird swarm algorithms, BSA)在求解复杂函数问题时存在的精度低、易陷入局部最优等问题,在保留BSA简单性的同时,提出一种基于混合决策的改进鸟群算法(improved bird swarm algorithms based on mixed decision making, IBSA)。应用重心反向学习机制初始化鸟群,维持鸟群较好的空间解分布。为了有效平衡算法在寻优过程中全局探索能力和局部发觉能力,动态调整鸟群飞往另外区域的周期。引入自适应余弦函数权重策略和加权平均思想对生产者觅食公式进行改进,增加算法在陷入局部最优后的脱困能力。在9个测试函数的基础上通过仿真试验对比基于IBSA、BSA、粒子群算法(particle swarm optimization, PSO)性能。结果表明,改进算法在单峰函数和多峰函数的测试中,寻优精度和寻优速度得到了较大程度上的提升。

关键词: 鸟群算法, 重心反向学习, 自适应余弦函数权重, 混合决策, 重心反向学习机制

Abstract:

Aiming at the problems of low precision and easy to fall into local optimum in solving complex function problems of traditional bird swarm algorithm (BSA), an improved bird swarm algorithm based on mixed decision-making was proposed while retaining the simplicity of BSA. The centroid opposition-based learning was used to initialize the bird population and maintain the better spatial solution distribution of the bird flock. In order to balance the global search ability and local detection ability of the algorithm in the optimization process, the period time of the birds flying to another area was dynamically adjusted. The weighting strategy of adaptive cosine function and weighted averaging idea were introduced to improve the producer's foraging formula, so as to increase the ability of the algorithm to get rid of difficulties after falling into local optimum. The performance of improved bird swarm algorithm based on mixed decision-making, bird swarm algorithm and particle swarm optimization were compared on the basis of nine test functions. The results showed that the accuracy and speed of the improved algorithm were greatly improved in the test of single-peak and multi-peak functions.

Key words: bird swarm algorithm, centroid opposition-based learning, the weighting strategy of adaptive cosine function, mixed decision making, the centroid opposition-based learning

中图分类号: 

  • TP391

图1

S型函数曲线"

图2

变换后的S型函数曲线"

表1

试验设置参数"

算法 参数设置
IBSA c1=c2=1.5, a1=a2=1, FQ=[4, 10], ω=[4, 9], a=12
BSA c1=c2=1.5, a1=a2=1, FQ=10
PSO ω=0.729, c1=c2=1.494 45,

表2

标准测试函数基本信息"

函数名 表达式 范围 最优值
Schwefel 1.2 $F_{1}(x)=\sum\limits_{i=1}^{n}\left(\sum\limits_{j=1}^{i} x_{j}^{2}\right)^{2}$ [-10, 10] 0
Tablet $F_{2}(x)=10^{6} x_{1}^{2}+\sum\limits_{i=2}^{n} x_{i}^{2}$ [-100, 100] 0
Schwefel 2.22 $F_{3}(x)=\sum\limits_{i=1}^{n}\left|x_{i}\right|+\prod\limits_{i=1}^{n}\left|x_{i}\right|$ [-10, 10] 0
Sphere $F_{4}(x)=\sum\limits_{i=1}^{n} x_{i}^{2}$ [-100, 100] 0
Alpine $F_{5}(x)=\sum\limits_{i=1}^{n}\left|x_{i} \sin \left(x_{i}\right)+0.1 x_{i}\right|$ [-10, 10] 0
Rastrigin $F_{6}(x)=\sum\limits_{i=1}^{n}\left(x_{i}^{2}-10 \cos \left(2 \pi x_{i}\right)+10\right)$ [-5.12, 5.12] 0
Griewank $F_{7}(x)=\sum\limits_{i=1}^{n} \frac{x_{i}^{2}}{4000}-\prod\limits_{i=1}^{n} \cos \left(\frac{x_{i}}{\sqrt{i}}\right)+1$ [-600, 600] 0
Powell $F_{8}(x)=\sum\limits_{i=1}^{n / 4}\left[\left(x_{4 i-3}+10 x_{4 i-2}\right)^{2}+5\left(x_{4 i-1}-x_{4 i}\right)^{2}+\left(x_{4 i-2}-2 x_{4 i-1}\right)^{4}+10\left(x_{4 i-3}-x_{4 i}\right)^{4}\right]$ [-4, 5] 0
Zakharov $F_{9}(x)=\sum\limits_{i=1}^{n} x_{i}^{2}+\left(\sum\limits_{i=1}^{n} 0.5 i x_{i}\right)^{2}+\left(\sum\limits_{i=1}^{n} 0.5 i x_{i}\right)^{4}$ [-5, 10] 0

表3

不同算法之间的性能对比"

函数 维数 算法 最优值 最差值 平均值 标准差 成功率/% 平均耗时/s
IBSA 0 0 0 0 100 1.464 4
10 BSA 0 0 0 0 100 1.865 5
PSO 1.670×10-134 6.565×10-45 6.565×10-47 6.565×10-46 97 1.187 2
IBSA 0 0 0 0 100 1.440 7
F1 20 BSA 0 0 0 0 100 1.826 9
PSO 5.522×10-7 3.037×10-3 2.129×10-4 4.340×10-4 0 1.217 4
IBSA 0 0 0 0 100 1.510 2
50 BSA 0 0 0 0 100 1.914 6
PSO 0.841 2.251×101 6.463 4.061 0 1.302 9
IBSA 0 0 0 0 100 1.829 9
10 BSA 2.579×10-252 5.409×10-187 7.623×10-189 0 100 2.230 9
PSO 7.388×10-53 1.621×10-4 4.465×10-6 2.167×10-5 0 1.596 4
IBSA 0 0 0 0 100 2.263 6
F2 20 BSA 3.363×10-247 3.795×10-165 4.579×10-167 0 100 2.712 6
PSO 1.359×10-2 2.687 3.255 3.694 0 2.081 7
IBSA 0 0 0 0 100 3.615 9
50 BSA 1.157×10-251 1.243×10-170 1.243×10-172 0 100 3.995 4
PSO 2.576 2.461 7.731 3.557 0 3.313 6
IBSA 4.303×10-221 7.367×10-195 1.539×10-196 0 100 1.833 9
10 BSA 7.813×10-112 2.020×10-77 2.102×10-79 2.020×10-78 20 2.299 6
PSO 7.269×10-5 1.331×10-1 1.326×10-2 2.201×10-2 0 1.617 4
IBSA 1.892×10-223 2.538×10-179 2.538×10-181 0 100 1.897 8
F3 20 BSA 7.098×10-110 6.962×10-74 6.962×10-76 6.962×10-75 15 2.317 0
PSO 2.199×10-1 3.028 1.029 0.597 0 1.581 6
IBSA 5.854×10-220 4.740×10-187 4.740×10-189 0 100 2.022 0
50 BSA 1.339×10-111 1.445×10-77 1.704×10-79 1.466×10-78 14 2.353 3
PSO 6.468 1.965×101 1.309×101 3.204 0 1.689 1
IBSA 0 0 0 0 100 1.453 1
10 BSA 5.489×10-247 7.667×10-182 7.669×10-184 0 100 1.822 3
PSO 1.066×10-56 6.109×10-5 6.113×10-7 6.109×10-6 0 1.160 9
IBSA 0 0 0 0 100 1.495 3
F4 20 BSA 4.011×10-247 1.652×10-183 1.808×10-185 0 100 1.858 1
PSO 0.108×10-1 0.762 0.161 0.150 0 1.235 4
IBSA 0 0 0 0 100 1.553 3
50 BSA 3.162×10-249 4.535×10-191 4.538×10-193 0 100 1.905 1
PSO 2.018 1.120×101 5.751 1.798 0 1.287 4
IBSA 1.067×10-216 5.371×10-194 5.510×10-196 0 100 1.940 5
10 BSA 1.331×10-106 8.476×10-84 1.415×10-85 9.703×10-85 24 2.368 1
PSO 4.454×10-7 0.331 0.017 0.042 0 1.722 3
IBSA 2.531×10-225 1.234×10-190 1.234×10-192 0 100 2.323 3
F5 20 BSA 1.036×10-105 7.532×10-74 7.532×10-76 7.532×10-75 21 2.812 9
PSO 9.482×10-3 2.922 0.408 0.551 0 2.064 9
IBSA 1.103×10-222 7.117×10-186 7.117×10-188 0 100 3.563 3
50 BSA 8.997×10-110 8.052×10-82 9.490×10-84 8.125×10-83 19 3.994 9
PSO 1.985 1.801×101 7.424 2.804 0 3.412 2
IBSA 0 0 0 0 100 1.847 6
10 BSA 0 0 0 0 100 2.264 0
PSO 1.990 2.288×101 8.467 3.793 0 1.613 9
IBSA 0 0 0 0 100 2.284 7
F6 20 BSA 0 0 0 0 100 2.688 4
PSO 6.236 4.507×101 1.817×101 5.829 0 2.073 9
IBSA 0 0 0 0 100 3.611 0
50 BSA 0 0 0 0 100 4.151 3
PSO 7.070×101 1.611×102 1.108×102 1.833×101 0 3.481 4
IBSA 0 0 0 0 100 2.261 9
10 BSA 0 0 0 0 100 2.673 1
PSO 0.832 5.868 2.435 0.899 0 2.102 7
IBSA 0 0 0 0 100 2.6604
F7 20 BSA 0 0 0 0 100 3.064 9
PSO 5.983 1.495×101 9.993 2.020 0 2.553 7
IBSA 0 0 0 0 100 3.882 9
50 BSA 0 0 0 0 100 4.294 4
PSO 2.518×101 5.273×101 3.723×101 4.637 0 3.970 0
IBSA 0 0 0 0 100 1.330 2
10 BSA 0 2.020×10-189 2.020×10-191 0 100 1.771 2
PSO 1.765×10-32 1.690×10-6 1.929×10-8 1.693×10-7 0 1.045 5
IBSA 0 0 0 0 100 1.462 0
F8 20 BSA 3.849×10-255 2.245×10-181 2.286×10-183 0 100 1.887 2
PSO 6.275×102 1.441×101 1.555 2.132 0 1.222 7
IBSA 0 0 0 0 100 1.903 9
50 BSA 8.628×10-250 4.011×10-189 4.011×10-191 0 100 2.340 6
PSO 1.284×101 8.807×101 4.002×101 1.65 0 1.672 1
IBSA 0 0 0 0 100 1.329 4
10 BSA 1.186×10-247 2.661×10-171 2.661×10-173 0 100 1.755 7
PSO 5.982×10-67 9.092×10-6 1.244×10-7 9.287×10-07 0 0.994 7
IBSA 0 0 0 0 100 1.327 4
F9 20 BSA 7.775×10-247 5.183×10-187 5.183×10-189 0 100 1.786 3
PSO 0.076 9 2.947×101 1.267 4.044 0 1.081 5
IBSA 0 0 0 0 100 1.705 5
50 BSA 2.081×10-250 6.203 9×10-168 6.203 9×10-170 0 100 2.080 3
PSO 1.158×101 4.111×102 6.729×101 5.663×101 0 1.407 0

图3

各测试函数平均收敛曲线"

表4

文献[7]算法与本文改进算法的性能对比"

文献[7]中的函数 算法
最优值 最差值 平均值 方差
F2 IBSA 0 0 0 0
AIBSO 1.051 6×10-24 1.006 4×102 1.634 4 1.052 7×101
F3 IBSA 0 0 0 0
AIBSO 1.509 7×10-18 1.463 1×10-1 5.072 8×10-3 2.187 9×10-2
F7 IBSA 0 0 0 0
AIBSO 0 1.400 4×10-8 3.545 1×10-10 2.030 6×10-9

表5

文献[9]算法与本研究改进算法的性能对比"

文献[9]中的函数 算法 最优值 最差值 平均值 标准差
F1 IBSA 0 0 0 0
LFSABSA 3.47×10-200 8.44×10-152 8.44×10-153 2.67×10-152
F2 IBSA 0 0 0 0
LFSABSA 1.27×10-176 3.55×10-155 2.97×10-156 0
F3 IBSA 0 0 0 0
LFSABSA 7.92×10-12 1.19×10-7 1.42×10-8 3.72×10-8

表6

文献[10]算法与本研究改进算法的性能对比"

文献[10]中的函数
算法
最优值 最差值 平均值 标准差
F1 IBSA 0 0 0 0
MMSBSA 2.629 4×10-278 1.867 5×10-214 6.225 0×10-216 4.314 7×10-215
F3 IBSA 3.349 1×10-232 2.146 7×10-190 7.155 6×10-192 0
MMSBSA 1.081 5×10-10 1.523 5×10-5 1.281 9×10-6 3.004 1×10-6
F4 IBSA 1.781 0×10-226 2.521 5×10-191 8.404 9×10-193 0
MMSBSA 3.818 3×10-4 0.133 6 0.013 5 0.034 0
1 YANG Xinshe, DEB Suash. Cuckoo search via levy flights[J]. Processing of World Congress on Nature and Biologically Computing (NaBIC 2009). New Delhi, India: IEEE, 2009: 210-214.
2 陈忠云,张达敏,辛梓芸,等.疯狂蝙蝠算法的低通FIR滤波器设计[J/OL].计算机应用研究.[2019-06-17].http://kns.cnki.net/kcms/detail/51.1196.TP.20190614.1853.050.html.DOI: 10.19734/j.issn.1001-3695.2019.01.0025
CHEN Zhongyun, ZHANG Damin, XIN Ziyun, et al. Design of low pass FIR filter for crazy bat algorithm [J/OL]. Computer Application Research. [2019-06-17]. http://kns.cnki.net/kcms/detail/51.1196.TP.20190614.1853.050.html. DOI: 10.19734/j.issn.1001-3695.2019.01.0025
3 李磊, 高雷阜, 赵世杰. 基于神经网络的粒子群算法优化SVM参数问题[J]. 计算机工程与应用, 2015, 51 (4): 162- 164.
doi: 10.3778/j.issn.1002-8331.1304-0338
LI Lei , GAO Leifu , ZHAO Shijie . Question of SVM kernel parameter optimization with particle swarm algorithm based on neural network[J]. Computer Engineering and Applications, 2015, 51 (4): 162- 164.
doi: 10.3778/j.issn.1002-8331.1304-0338
4 高浩, 冷文浩, 须文波. 一种全局收敛的PSO算法及其收敛分析[J]. 控制与决策, 2009, 24 (2): 196- 201.
doi: 10.3321/j.issn:1001-0920.2009.02.007
GAO Hao , LENG Wenhao , XU Wenbo . A global convergence algorithm of particle swarm optimization and its convergence analysis[J]. Control and Decision, 2009, 24 (2): 196- 201.
doi: 10.3321/j.issn:1001-0920.2009.02.007
5 MENG Xiaobing, LIU Yu, GAO Xiaozhi, et al. A new bio-inspired algorithm: chicken swarm optimization[C]//International Conference in Swarm Intelligence. Hefei, China: Springer, 2014.
6 MENG Xiaobing , GAO Xiaozhi , LI Hualu , et al. A new bio-inspired optimisation algorithm: bird swarm algorithm[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2016, 28 (4): 673- 687.
7 李延延, 万仁霞. 一种改进算的鸟群算法[J]. 微电子学与计算机, 2018, 35 (9): 85- 90.
LI Yanyan , WAN Renxia . An improved bird swarm algorithm[J]. Microelectronics and Computer, 2018, 35 (9): 85- 90.
8 彭君君, 刘勇进. 基于双高斯函数的一种高效鸟群优化算法[J]. 现代电子技术, 2018, 41 (23): 114- 120.
PENG Junjun , LIU Yongjin . An efficient bird swarm optimization algorithm based on double Gauss function[J]. Modern Electronic Technology, 2018, 41 (23): 114- 120.
9 杨文荣, 马晓燕, 边鑫磊. 基于Levy飞行策略的自适应改进鸟群算法[J]. 河北工业大学学报, 2017, (5): 14- 20.
YANG Wenrong , MA Xiaoyan , BIAN Xinlei . Adaptive improved bird swarm algorithm based on Levy flight strategy[J]. Journal of Hebei University of Technology, 2017, (5): 14- 20.
10 王建伟, 彭亦功. 引入迁移和变异策略的改进鸟群算法及其在参数估计中的应用[J]. 华东理工大学学报(自然科学版), 2018, 44 (4): 617- 624.
WANG Jianwei , PENG Yigong . Improved bird swarm algorithm with migration and mutation strategy and its application in parameter estimation[J]. Journal of East Polytechnic University (Natural Science Edition), 2018, 44 (4): 617- 624.
11 张伟伟, 刘勇进, 彭君君. 改进鸟群算法用于SVM参数选择[J]. 计算机工程与设计, 2017, 38 (12): 85- 89.
ZHANG Weiwei , LIU Yongjin , PENG Junjun . Improved bird swarm algorithms for SVM parameter selection[J]. Computer Engineering and Design, 2017, 38 (12): 85- 89.
12 崔东文, 金波. 改进鸟群算法及其在梯级水库优化调度中的应用[J]. 三峡大学学报(自然科学版), 2016, 38 (6): 7- 14.
CUI Dongwen , JIN bo . Improved bird swarm algorithm and its application to reservoir optimal operation[J]. Journal of Three Gorges University (Natural Science Edition), 2016, 38 (6): 7- 14.
13 KN L, REDDY D B R, KALAVATHI D M S. Snow finch bird swarm optimization algorithm for solving reactive power problem [J/OL]. International Journal of Mathematical Engineering & Management Sciences, 2016. https://www.researchgate.net/publication/310772750_Snow_finch_Bird_Swarm_Optimization_Algorithm_For_Solving_Reactive_Power_Problem.
14 HAUPT R L , HAUPT S E . Practicalgenetic algorithm[M]. Hoboken, USA: Wiley, 2004.
15 RAHNAMAYAN S, JESUTHASAN J, et al. Computing opposition by involving entire population[C]//IEEE Congress on Evolutionary Computation. New York, UK: IEEE, 2014: 1800-1807.
16 TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//Proceedings of International Conference on Intelligent Agent, Web Technologies and Internet Commerce. Vienna, Austria: IEEE, 2005: 695-701.
17 XU Q , WANG L , WANG N , et al. A review of opposition-based learning from 2005 to 2012[J]. Engineering Applications of Artificial Intelligence, 2014, (29): 1- 12.
18 黄洋, 鲁海燕, 许凯波, 等. 基于S型函数的自适应粒子群优化算法[J]. 计算机科学, 2019, 46 (1): 252- 257.
HUANG Yang , LU Haiyan , XU Kaibo , et al. Adaptive particle swarm optimization algorithm based on S-type function[J]. Computer Science, 2019, 46 (1): 252- 257.
19 艾兵, 董明刚. 基于高斯扰动和自然选择的改进粒子群优化算法[J]. 计算机应用, 2016, 36 (3): 687- 691.
AI Bing , DONG Minggang . Improved particle swarm optimization algorithm based on gauss perturbation and natural selection[J]. Computer Applications, 2016, 36 (3): 687- 691.
20 张迅, 王平, 邢建春, 等. 基于高斯函数递减惯性权重的粒子群优化算法[J]. 计算机应用研究, 2012, 29 (10): 3710- 3712.
doi: 10.3969/j.issn.1001-3695.2012.10.027
ZHANG Xun , WANG Ping , XING Jianchun , et al. Particle swarm optimization based on gauss function decreasing inertial weight[J]. Computer Applied Research, 2012, 29 (10): 3710- 3712.
doi: 10.3969/j.issn.1001-3695.2012.10.027
[1] 宋士奇,朴燕,蒋泽新. 基于改进YOLOv3的复杂场景车辆分类与跟踪[J]. 山东大学学报 (工学版), 2020, 50(2): 27-33.
[2] 陈宁宁,赵建伟,周正华. 基于校正神经网络的视频追踪算法[J]. 山东大学学报 (工学版), 2020, 50(2): 17-26.
[3] 赵越男,陈桂友,孙琛,卢宁,廖立伟. 基于空间隐患分布与运动意图解析的危险评估方法[J]. 山东大学学报 (工学版), 2020, 50(1): 28-34.
[4] 苏佳林,王元卓,靳小龙,程学旗. 自适应属性选择的实体对齐方法[J]. 山东大学学报 (工学版), 2020, 50(1): 14-20.
[5] 蔡国永,林强,任凯琪. 基于域对抗网络和BERT的跨领域文本情感分析[J]. 山东大学学报 (工学版), 2020, 50(1): 1-7,20.
[6] 姚元玺. 基于分场景重构的风电汇聚趋势性量化方法[J]. 山东大学学报 (工学版), 2019, 49(6): 86-92.
[7] 张继,金翠,王洪元,陈首兵. 基于奇异值分解行人对齐网络的行人重识别[J]. 山东大学学报 (工学版), 2019, 49(5): 91-97.
[8] 岳俊梅,张冬梅. 基于CSI的轻量级自适应井下定位算法[J]. 山东大学学报 (工学版), 2019, 49(5): 112-118.
[9] 张宗堂,王森,孙世林. 一种针对不平衡数据分类的集成学习算法[J]. 山东大学学报 (工学版), 2019, 49(4): 8-13.
[10] 陈馨菂,李天瑞,杨欢欢. 基于时间序列数据的交互式主题河流可视化[J]. 山东大学学报 (工学版), 2019, 49(4): 29-35, 43.
[11] 黄劲潮. 深度残差特征与熵能量优化运动目标跟踪算法[J]. 山东大学学报 (工学版), 2019, 49(4): 14-23.
[12] 汪嘉晨,唐向红,陆见光. 轴承故障诊断中特征选取技术[J]. 山东大学学报 (工学版), 2019, 49(2): 80-87, 95.
[13] 张红斌,邱蝶蝶,邬任重,朱涛,滑瑾,姬东鸿. 基于极端梯度提升树算法的图像属性标注[J]. 山东大学学报 (工学版), 2019, 49(2): 8-16.
[14] 侯霄雄,许新征,朱炯,郭燕燕. 基于AlexNet和集成分类器的乳腺癌计算机辅助诊断方法[J]. 山东大学学报 (工学版), 2019, 49(2): 74-79.
[15] 杨煦,陈辉,林游思,屠长河. 飞行蝙蝠标记自动提取与追踪算法[J]. 山东大学学报 (工学版), 2019, 49(2): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[3] 刘忠国,张晓静,刘伯强,刘常春 . 视觉刺激间隔对大脑诱发电位的影响[J]. 山东大学学报(工学版), 2006, 36(3): 34 -38 .
[4] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[5] 曲延鹏,陈颂英,李春峰,王小鹏,滕书格 . 低压大流量自激脉冲清洗喷嘴内部气液两相流数值模拟[J]. 山东大学学报(工学版), 2006, 36(4): 16 -20 .
[6] 胡天亮,李鹏,张承瑞,左毅 . 基于VHDL的正交编码脉冲电路解码计数器设计[J]. 山东大学学报(工学版), 2008, 38(3): 10 -13 .
[7] 世文学 刘卫东 孙永福. 基于DEM的堰塞湖1/3溃决模拟及人员撤离方案研究[J]. 山东大学学报(工学版), 2009, 39(5): 144 -148 .
[8] 王凯,孙奉仲,赵元宾,高明,高山 . 自然通风冷却塔进风口流场模型的建立及计算[J]. 山东大学学报(工学版), 2008, 38(1): 13 -17 .
[9] 张波,李术才,杨学英,王锡平,张敦福 . 含两个圆形孔洞岩盐路基稳定性的数值分析[J]. 山东大学学报(工学版), 2008, 38(1): 66 -69 .
[10] 曹刚 董朝阳 黄洁宝 薛禹胜. 应用FACTS装置实现电力系统区间震荡阻尼控制[J]. 山东大学学报(工学版), 2009, 39(3): 31 -36 .