山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (2): 44-49.doi: 10.6040/j.issn.1672-3961.0.2019.313
陈艳平1,2(),冯丽1,3,*(),秦永彬1,2,黄瑞章1,2
Yanping CHEN1,2(),Li FENG1,3,*(),Yongbin QIN1,2,Ruizhang HUANG1,2
摘要:
为改进传统特征方法很难获取中文句子中结构信息的问题,提出一种基于深度神经网络的句法要素识别模型。采用Bi-LSTM网络从原始数据中自动抽取句子中的结构信息和语义信息,利用Attention机制自动计算抽象语义特征的分类权重,通过CRF层对输出标签进行约束,输出最优的标注序列。经过对比验证,该模型能有效识别句子中的句法要素,在标注数据集上F1达到84.85%。
中图分类号:
1 | FILLMORE C J . Toward a modern theory of case[M]. Washington D.C., USA: Department of Health, Education and Welfare, 1968. |
2 | 吴帅, 潘海珍. 基于隐马尔可夫模型的中文分词[J]. 现代计算机(专业版), 2018, (33): 25- 28. |
WU Shuai , PAN Haizhen . Chinese word segmentation based on hidden markov model[J]. Modern Computer (Professional), 2018, (33): 25- 28. | |
3 | 姚茂建, 李晗静, 吕会华. 基于马尔科夫模型的聋生阅读输入分析[J]. 北京联合大学学报, 2018, 32 (3): 86- 92. |
YAO Maojian , LI Hanjing , LV Huihua . Analysis of reading input of deaf students based on markov model[J]. Journal of Beijing Union University, 2018, 32 (3): 86- 92. | |
4 | 刘晨玥, 李兵, 吴卫星. 基于罪名相关成分标注的刑事裁判文书概要信息提取[J]. 山东科技大学学报(自然科学版), 2018, 37 (4): 92- 101. |
LIU Chenyue , LI Bing , WU Weixing . Extraction of summary information of criminal judgment documents based on the labeling of relevant components of charges[J]. Journal of Shandong University of Science and Technology (Natural Science Edition), 2018, 37 (4): 92- 101. | |
5 | COHN T, BLUNSOM P. Semantic role labeling with tree conditional random fields[C]//Proceedings of the9th Conference on Computational Natural Language Learning. Stroudsburg, USA: ACM Press, 2005: 169-172. |
6 | YU J D , FAN X Z , PANG W B , et al. Semantic role labeling based on conditional random fields[J]. Journal of Southeast University (English Edition), 2007, 23 (3): 361- 364. |
7 |
王臻, 常宝宝, 穗志方. 基于分层输出神经网络的汉语语义角色标注[J]. 中文信息学报, 2014, 28 (6): 56- 61.
doi: 10.3969/j.issn.1003-0077.2014.06.008 |
WANG Zhen , CHANG Baobao , SUI Zhifang . Chinese semantic role labeling based on hierarchical output neural network[J]. Chinese Journal of Information, 2014, 28 (6): 56- 61.
doi: 10.3969/j.issn.1003-0077.2014.06.008 |
|
8 | ZHOU Jie, XU Wei. End-to-end learning of semantic role labeling using recurrent neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. Beijing, China: Association for Computational Linguistics, 2015: 1127-1137. |
9 | ROTH M, LAPATA M. Neural semantic role labeling with dependency path embeddings[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany: Association for computational linguistics, 2016: 1192-1202. |
10 | SHA Lei, JIANG Tingsong, CHANG Baobao, et al. Capturing argument relationship for Chinese semantic role labeling[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, USA: the Association for computational linguistics, 2016: 2011-2016. |
11 | GUO Jiang, CHE Wanxiang, WANG Haifeng, et al. A unified architecture for semantic role labeling and relation classification[C]//Proceedings of the 26th International Conference on Computational Linguistics. Osaka, Japan: the Association for Computational Linguistics, 2016: 1264-1274. |
12 | 王瑞波, 李济洪, 李国臣, 等. 基于Dropout正则化的汉语框架语义角色识别[J]. 中文信息学报, 2017, 31 (1): 147- 154. |
WANG Ruibo , LI Jihong , LI Guochen , et al. Chinese framework semantic role recognition based on dropout regularization[J]. Chinese Journal of Information, 2017, 31 (1): 147- 154. | |
13 | HE Luheng, LEE Kenton, LEWIS Mike, et al. Deep semantic role labeling: what works and what s next[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver, Canada: Association for Computational Linguistics, 2017: 473-483. |
14 | MASASHI Yoshikawa, HIROSHI Noji, YUJI Matsu-moto. A* CCG Parsing with a supertag and dependency factored model[C]// Conference on Empirical Methods in Natural Language Processing. Vancouver, Canada: Association for Computational Linguistics, 2017: 277-287. |
15 | TAN Zhixing, WANG Mingxuan, XIE Jun, et al. Deep semantic role labeling with self-attention[J/OL]. arXiv: 1712.01586, 2017. https://arxiv.org/pdf/1712.01586.pdf. |
16 | STRUBELL Emma, VERGA Patrick, ANDOR Daniel., et al. Linguistically-informed self-attention for semantic role labeling[J/OL]. arXiv: 1804.08199v3[cs.CL], 2018. https://arxiv.org/pdf/1804.08199.pdf. |
17 | 张苗苗, 刘明童, 张玉洁, 等. 融合Gate过滤机制与深度Bi-LSTM-CRF的汉语语义角色标注[J]. 情报工程, 2018, 4 (2): 45- 53. |
ZHANG Miaomiao , LIU Mingtong , ZHANG Yujie , et al. Gate filtering mechanism and deep Bi-LSTM-CRF semantic role labeling in Chinese are integrated[J]. Intelligence Engineering, 2018, 4 (2): 45- 53. | |
18 | XUE Nianwen, MARTHA Stone Palmer. Automatic semantic role labeling for Chinese verbs[C]// Proceedings of the 19th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 2005. |
19 |
王明轩, 刘群. 基于深度神经网络的语义角色标注[J]. 中文信息学报, 2018, 32 (2): 50- 57.
doi: 10.3969/j.issn.1003-0077.2018.02.006 |
WANG Mingxue , LIU Qun . Semantic role labeling based on deep neural network[J]. Chinese Journal of Information, 2018, 32 (2): 50- 57.
doi: 10.3969/j.issn.1003-0077.2018.02.006 |
|
20 | YOU Liping, LIU Kaiying. Building Chinese FrameNet database[C]// Proceedings of 2005 IEEE International Conference on Natural Language Processing and Knowledge Engineering. Wuhan, China: Chinese Information Society of China, 2005: 323-328. |
[1] | 陈宁宁,赵建伟,周正华. 基于校正神经网络的视频追踪算法[J]. 山东大学学报 (工学版), 2020, 50(2): 17-26. |
[2] | 沈冬冬,周风余,栗梦媛,王淑倩,郭仁和. 基于集成深度神经网络的室内无线定位[J]. 山东大学学报 (工学版), 2018, 48(5): 95-102. |
[3] | 唐乐爽,田国会,黄彬. 一种基于DSmT推理的物品融合识别算法[J]. 山东大学学报(工学版), 2018, 48(1): 50-56. |
[4] | 刘帆,陈泽华,柴晶. 一种基于深度神经网络模型的多聚焦图像融合方法[J]. 山东大学学报(工学版), 2016, 46(3): 7-13. |
[5] | 赵志宏1,2 ,黄蕾2 ,刘峰2 ,陈振宇1,2 . Deep Web搜索技术进展综述 [J]. 山东大学学报(工学版), 2009, 39(2): 15-20. |
|