山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 91-97.doi: 10.6040/j.issn.1672-3961.0.2018.347
Ji ZHANG(),Cui JIN,Hongyuan WANG*(),Shoubing CHEN
摘要:
为解决行人重识别的训练数据集中自动检测出的行人图像背景过大和行人部分缺失的错位现象问题,使用空间变换网络层对图像错位进行处理。为优化整个网络的深度学习过程,提高图像检索能力,增加网络特征层,使用奇异值向量分解方法对其进行处理。将行人对齐网络和奇异向量分解相结合,构造奇异值分解行人对齐网络,既可解决图像错位问题,又提高图像特征的相似性度量的效果。在Market1501、CUHK03和DukeMTMC-reID数据集上进行试验,并与行人对齐网络和其他深度学习与非深度学习的行人重识别方法进行比较,试验结果中整个网络的平均检索精度和行人图像第一次匹配正确的概率平均达到了65%和80%左右,这表明奇异值分解行人对齐网络可以提高对行人匹配的效果。
中图分类号:
1 | ZHENG Liang, SHEN Liyue, TIAN Lu, et al. Scalable person re-identification: a benchmark[C]//IEEE International Conference on Computer Vision. Santiago, Chile: IEEE Computer Society, 2015: 1116-1124. |
2 | WANG Hongyuan , DING Zongyuan , ZHANG Ji , et al. Person reidentification by semisupervised dictionary rectification learning with retraining module[J]. Journal of Electronic Imaging, 2018, 27 (4): 043043-1- 9. |
3 | NI Tongguang , DING Zongyuan , CHEN Fuhua , et al. Relative distance metric leaning based on clustering centralization and projection vectors learning for person re-identification[J]. IEEE Access, 2018, 6 (1): 11405- 11411. |
4 | 丁宗元, 王洪元, 陈付华, 等. 基于距离中心化与投影向量学习的行人重识别[J]. 计算机研究与发展, 2017, 54 (8): 1785- 1794. |
DING Zongyuan , WANG Hongyuan , CHEN Fuhua , et al. Pedestrian weight recognition based on distance centralization and projection vector learning[J]. Computer Research and Development, 2017, 54 (8): 1785- 1794. | |
5 | WANG Hongyuan, DING Zongyuan, NI Tongguang, et al. KL divergence based person re-identification using multivariate Gaussian distributions[C]//Proceedings of the 2017 4th Asian Conference on Pattern Recognition. Nanjing, China: Sponsorship, 2017: 417-422. |
6 | 张文文, 王洪元, 万建武, 等. 基于稀疏学习的行人重识别算法[J]. 数据采集与处理, 2018, 33 (5): 855- 864. |
ZHANG Wenwen , WANG Hongyuan , WAN Jianwu , et al. Pedestrian weight recognition algorithm based on sparse learning[J]. Data Acquisition and Processing, 2018, 33 (5): 855- 864. | |
7 | NI Tongguang , GU Xiaoqing , WANG Honyuan , et al. Discirminative deep trasfer metric learning for cross-scenario person re-identification[J]. Journal of Electronic Imaging, 2018, 27 (4): 043026- 1. |
8 |
陈首兵, 王洪元, 金翠, 等. 基于孪生网络和重排序的行人重识别[J]. 计算机应用, 2018, 38 (11): 3161- 3166.
doi: 10.11772/j.issn.1001-9081.2018041223 |
CHEN Shoubing , WANG Hongyuan , JIN Cui , et al. Pedestrian weight recognition based on twin networks and reordering[J]. Computer Applications, 2018, 38 (11): 3161- 3166.
doi: 10.11772/j.issn.1001-9081.2018041223 |
|
9 | 金翠, 王洪元, 陈首兵. 基于随机擦除行人对齐网络的行人重识别方法[J]. 山东大学学报(工学版), 2018, 48 (6): 67- 73. |
JIN Cui , WANG Hongyuan , CHEN Shoubing . Pedestrian weight recognition method based on random erasure pedestrian alignment network[J]. Journal of Shandong University(Engineering Science Edition), 2018, 48 (6): 67- 73. | |
10 | DENTON E, ZAREMBA W, BRUNA J, et al. Exploiting linear structure within convolutional networks for efficient evaluation[C]//Proceedings of the Conference and Workshop on Neural Information Processing Systems. Montréal, Canada: IEEE Computer Society, 2014: 1269-1277. |
11 | ZHAO Liming, LI Xi, WANG Jingdong, et al. Deeply-learned part-aligned representations for person re-identification[C]//Proceedings of the International Conference on Computer Vision. Venice, Italy: IEEE Computer Society, 2017: 3219-3228. |
12 | ZHENG Zhedong, ZHENG Liang, YANG Yi. Pedestrian alignment network for large-scale person re-identification[J/OL].[2018-12-20]. https://arxiv.org/pdf/1707.00408.pdf. |
13 | SUN Yifan, ZHENG Liang, DENG Weijian. SVDnet for pedestrian retrieval[C]//Proceedings of the International Conference on Computer Vision. Venice, Italy: IEEE Computer Society, 2017: 3820-3828. |
14 | SU Chi, ZHANG Shiliang, XING Junliang, et al. Deep attributes driven multi-camera person re-identification[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, the Netherlands: IEEE Computer Society, 2016: 475-491. |
15 | SARFRAZ M Saquib, SCHUMANN Arne, EBERLE Andreas, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Salt Lake City, Utah: IEEE Computer Society, 2018: 420-429. |
16 | GUO Yiluan, CHEUNG Ngai-man.. Efficient and Deep person re-identification using multi-level similarity[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Salt Lake City, USA: IEEE Computer Society, 2018: 2335-2344. |
17 | HE Lingxiao, LIANG Jian, LI Haiqing, et al. Deep spatial feature reconstruction for partial person re-identification: alignment-free approach[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Salt Lake City, Utah: IEEE Computer Society, 2018: 7073-7082. |
18 | ZHONG Zhun, ZHENG Liang, CAO Donglin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Honolulu, Hawaii: IEEE Computer Society, 2017: 3652-3661. |
19 | LIAO Shengcai, HU Yang, ZHU Xiangyu, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE Computer Vision and Pattern Recognition(CVPR). Boston, Massachusetts: IEEE Computer Society, 2015: 2197-2206. |
20 | VARIOR Rahulrama, SHUAI Bing, LU Jiwen, et al. A siamese long short-term memory architecture for human reidentification[C]//Proceedings of the European Conference on Computer Vision, . Amsterdam, the Netherlands: IEEE Computer Society, 2016: 135-153. |
21 | VARIOR Rahulrama, HALOI Mrinal, WANG Gang. Gated siamese convolutional neural network architecture for human reidentification[C]//Proceedings of the European Conference on Computer Vision. Amsterdam, the Netherlands: IEEE Computer Society, 2016: 791-808. |
[1] | 万鹏. 基于F-PointNet的3D点云数据目标检测[J]. 山东大学学报 (工学版), 2019, 49(5): 98-104. |
[2] | 梁志祥,刘晓明,牟颖,刘玉田. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报 (工学版), 2019, 49(5): 24-28. |
[3] | 刘玉田,孙润稼,王洪涛,顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8. |
[4] | 李力钊,蔡国永,潘角. 基于C-GRU的微博谣言事件检测方法[J]. 山东大学学报 (工学版), 2019, 49(2): 102-106, 115. |
[5] | 侯霄雄,许新征,朱炯,郭燕燕. 基于AlexNet和集成分类器的乳腺癌计算机辅助诊断方法[J]. 山东大学学报 (工学版), 2019, 49(2): 74-79. |
[6] | 张成彬,赵慧,曹宗钰. 基于深度学习的车身网络KWP2000协议漏洞挖掘[J]. 山东大学学报 (工学版), 2019, 49(2): 17-22. |
[7] | 金翠,王洪元,陈首兵. 基于随机擦除行人对齐网络的行人重识别方法[J]. 山东大学学报 (工学版), 2018, 48(6): 67-73. |
[8] | 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39. |
[9] | 唐乐爽,田国会,黄彬. 一种基于DSmT推理的物品融合识别算法[J]. 山东大学学报(工学版), 2018, 48(1): 50-56. |
[10] | 周福娜,高育林,王佳瑜,文成林. 基于深度学习的缓变故障早期诊断及寿命预测[J]. 山东大学学报(工学版), 2017, 47(5): 30-37. |
[11] | 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40-47. |
[12] | 郑毅, 朱成璋. 基于深度信念网络的PM2.5预测[J]. 山东大学学报(工学版), 2014, 44(6): 19-25. |
|