山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 52-57.doi: 10.6040/j.issn.1672-3961.0.2019.154
郭英伦1(),郗富强2,苏瑞智1,李国祥1,于泽庭1,*()
Yinglun GUO1(),Fuqiang XI2,Ruizhi SU1,Guoxiang LI1,Zeting YU1,*()
摘要:
提出一种基于固体氧化物燃料电池(solid oxide fuel cell, SOFC)和跨临界二氧化碳循环(transcritical carbon dioxide cycle, TRCC)的联合发电系统,采用跨临界二氧化碳循环来回收SOFC的排气余热,同时利用了LNG冷量。建立该系统的数学模型,分析参数变化对系统性能的影响。结果表明,在设计条件下, SOFC、TRCC和整个系统的热效率分别为64.2%、22.4%和74.1%,系统热效率随着燃料电池入口温度增加而增加,以及水蒸气碳比的增加而降低;系统热效率随着TRCC的透平入口压力的升高而升高。
中图分类号:
1 |
JEONG K S , OH B S . Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle[J]. Journal of Power Sources, 2002, 105 (1): 58- 65.
doi: 10.1016/S0378-7753(01)00965-X |
2 |
ROKNI , MASOUD . Thermodynamic analysis of SOFC (solid oxide fuel cell): stirling hybrid plants using alternative fuels[J]. Energy, 2013, 61, 87- 97.
doi: 10.1016/j.energy.2013.06.001 |
3 | DICKS A , RAND D A J . Fuel cell systems explained[M]. New York, USA: Wiley, 2000. |
4 |
WANG Jiangfeng , YAN Zheyuan , MA Shaolin , et al. Thermodynamic analysis of an integrated power generation system driven by solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37 (3): 2535- 2545.
doi: 10.1016/j.ijhydene.2011.10.079 |
5 |
ARSALIS A . Thermoeconomic modeling and parametric study of hybrid SOFC—gas turbine—steam turbine power plants ranging from 1.5 to 10 MWe[J]. Journal of Power Sources, 2008, 181 (2): 313- 326.
doi: 10.1016/j.jpowsour.2007.11.104 |
6 |
AKKAYA A V , SAHIN B , ERDEM H H . An analysis of SOFC/GT CHP system based on exergetic performance criteria[J]. International Journal of Hydrogen Energy, 2008, 33 (10): 2566- 2577.
doi: 10.1016/j.ijhydene.2008.03.013 |
7 | SONG C . Fuel processing for low-temperature and high-temperature fuel cells challenges, and opportunities for sustainable development in the 21st century[J]. Catalysis Today, 2002, 77 (1): 17- 49. |
8 |
ZHANG Shiqi , LIU Haolun , LIU Meili , et al. An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization[J]. Applied Thermal Engineering, 2017, 121, 314- 324.
doi: 10.1016/j.applthermaleng.2017.04.066 |
9 |
RANJBAR F , CHITSAZ A , MAHMOUDI S M S , et al. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell[J]. Energy Conversion and Management, 2014, 87, 318- 327.
doi: 10.1016/j.enconman.2014.07.014 |
10 |
SANCHEZ D , ESCALONA J M M D , CHACARTEGUI R , et al. A comparison between molten carbonate fuel cells based hybrid systems using air and supercritical carbon dioxide Brayton cycles with state of the art technology[J]. Journal of Power Sources, 2011, 196 (9): 4347- 4354.
doi: 10.1016/j.jpowsour.2010.09.091 |
11 |
WALNUM H T , NEKS P , NORD L O , et al. Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions[J]. Energy, 2013, 59, 513- 520.
doi: 10.1016/j.energy.2013.06.071 |
12 | 郑开云. 超临界二氧化碳循环热电联产系统初步研究[J]. 分布式能源, 2017, 2 (3): 15- 19. |
ZHENG Kaiyun . Preliminary investigation on supercritical carbon dioxide cycle cogeneration system[J]. Distributed Energy, 2017, 2 (3): 15- 19. | |
13 |
YAMAGUCHI H , ZHANG X R , FUJIMA K , et al. Solar energy powered rankine cycle using supercritical CO2[J]. Applied Thermal Engineering, 2006, 26 (17-18): 2345- 2354.
doi: 10.1016/j.applthermaleng.2006.02.029 |
14 | DUAN Chengjie , WANG Jie , YANG Xiao-Yong . Features of supercritical carbon dioxide brayton cycle coupled with reactor[J]. Atomic Energy Science & Technology, 2010, 44 (11): 1341- 1348. |
15 |
CHAN S H , LOW C F , DING O L . Energy and exergy analysis of simple solid-oxide fuel-cell power systems[J]. Journal of Power Sources, 2002, 103 (2): 188- 200.
doi: 10.1016/S0378-7753(01)00842-4 |
16 |
CHAN S H , HO H K , TIAN Y . Multi-level modeling of SOFC—gas turbine hybrid system[J]. International Journal of Hydrogen Energy, 2003, 28 (8): 889- 900.
doi: 10.1016/S0360-3199(02)00160-X |
17 | 钟芬, 吴竺, 朱彤. 低温余热驱动的热电复合系统优化设计[J]. 中国电机工程学报, 2016, 36 (12): 3176- 3183. |
ZHONG Fen , WU Zhu , ZHU Tong . Optimization design of a combined organic rankine cycle-heat pump system driven by low-grade waste heat[J]. Proceedings of the CSEE, 2016, 36 (12): 3176- 3183. | |
18 | 冯兴强.固体氧化物燃料电池系统数学建模[D].上海:上海交通大学, 2009. |
FENG Xingqiang. Numerical simulation Jiaotong of solid oxide fuel cell system[D]. Shanghai: Shanghai Jiao Tong University, 2009. | |
19 | 贾俊曦.固体氧化物燃料电池传热传质模型研究[D].大连:大连理工大学, 2006. |
JIA Junxi. Study of model for heat and mass transfer in solid oxide fuel cell[D]. Dalian: Dalian University of Technology, 2006. |
[1] | 王寒冰, 刘晓辉, 田民丽, 王桂华, 于泽庭, 纪少波. 基于SOFC的功冷联供系统热力学特性分析[J]. 山东大学学报 (工学版), 2019, 49(5): 64-71. |
[2] | 马宗正,邵凤翔,王新莉,杨安杰. 发动机尾气温差发电装置[J]. 山东大学学报(工学版), 2016, 46(2): 122-127. |
[3] | 郭德栋1,2,沙爱民3. 基于微波与磁铁耦合发热效应的融雪除冰技术[J]. 山东大学学报(工学版), 2012, 42(4): 92-97. |
[4] | 张玉军,张兰,蒋三平. 采用凝胶注模工艺低温合成锶掺杂的锰酸镧粉体[J]. 山东大学学报(工学版), 2009, 39(3): 62-66. |
|