您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 122-127.doi: 10.6040/j.issn.1672-3961.0.2015.373

• • 上一篇    下一篇

发动机尾气温差发电装置

马宗正1,2,邵凤翔1,王新莉1,杨安杰1,2   

  1. 1.河南工程学院机械工程学院, 河南 郑州 451191;2.河南工程学院动力机械与车辆工程研究所, 河南 郑州 451191
  • 收稿日期:2015-11-17 出版日期:2016-04-20 发布日期:2015-11-17
  • 作者简介:马宗正(1981— ),男,山东济南人,副教授,博士,主要研究方向为车辆的节能减排技术. E-mail:zongzhengma@haue.edu.cn
  • 基金资助:
    河南省高等学校青年骨干教师资助项目(2014GGJS-120);郑州市科技攻关资助项目(20140596)

Thermoelectric generator system based on engine exhaust gas

MA Zongzheng1,2, SHAO Fengxiang1, WANG Xinli1, YANG Anjie1,2   

  1. 1. School of Mechanical Engineering, Henan University of Engineering, Zhengzhou 451191, Henan, China;
    2. Research Center of Power Machinery and Vehicle Engineering, Henan University of Engineering, Zhengzhou 451191, Henan, China
  • Received:2015-11-17 Online:2016-04-20 Published:2015-11-17

摘要: 为了对发动机尾气中蕴含的高温能量进行回收利用,对基于温差发电的发动机尾气温差发电装置进行试验。首先基于现有发动机台架试验系统增加温度、电压和电流测量系统,在此基础上,通过测量不同内部结构集热器表面温度和排气噪声的变化得到集热器内部结构对温差发电性能的影响规律,通过测量不同冷却方式下温差发电片两端温度以及输出电压和电流的变化,得到散热器冷却方式对温差发电性能的影响规律。结果表明,集热器内部结构采用中空结构时,不同位置表面温度差在6 ℃以内,有利于保持其表面温度的均匀性,有利于电能输出,但是对于降低噪声没有帮助;采用强制风冷方式有助于提高温差发电装置两端温差,相对于自然冷却方式温差大约可提高14 ℃,从而提升输出电能,但是由于风速的提升可以同时增加冷端和热端的表面换热效率,使得较多的热量扩散到环境中,从而产生当风速达到某一数值后温差不变的现象;相比于侧面冷却,正面冷却方式更具有优势,大约将温差发电器两端的温差提升15 ℃,但是只能冷却一面。

关键词: 台架试验, 换热效率, 数值计算, 温差发电, 冷却方式

Abstract: In order to recycle the waste energy from the exhaust gas of the internal combustion engine, one thermoelectric generator system(TEG)based on the TEG technology was experimentally studied. The test bed was added the temperature, voltage and currency measurement system based on the existing engine test systems firstly. Then the impacts of the internal structure of the heat collector on the TEG performance was got by measuring the temperature and noise variation for different inner structure while the impacts of the radiator cooling methods on the TEG performance was reached by measuring the temperature difference of the both ends and output voltage and currency of the TEG. The results showed that the internal structure of the collector with hollow structure was more conducive to maintain the surface temperature uniformity where the temperature difference was under 6 ℃ for the different points which was helpful to electricity energy output, but this structure was not helpful to reduce noise. It also indicated that forced air cooling method was good for improving the TEG temperature difference and enhancing the electricity energy output which could raise the temperature difference by 14 ℃ compared with naturral air cooling method, but the improvement was not changed when the velocity was higher than a limit value, because the heat transfer efficiency was increased simultaneously for both ends of TEG and more energy was released to the environment. Meanwhile, compared with the side cooling method the facade cooling was better which could raise the temperature difference by 15 ℃ except the single face cooling.

Key words: numerical calculation, cooling method, thermoelectric generator, bench experiment, heat transfer efficiency

中图分类号: 

  • TK417
[1] XU Yong, LI Zuanyi, DUAN Wenhui. Thermal and thermoelectric properties of graphene[J]. Small, 2014, 10(11):2182-2199.
[2] JOKINEN M, MANZANARES J A, KONTTURI K, et al. Thermal potential of ion-exchange membranes and its application to thermoelectric power generation[J]. Journal of Membrane Science, 2016, 499:234-244.
[3] BARMA M C, RIAZ M, SAUDUI R, et al. Estimation of thermoelectric power generation by recovering waste heat from Biomass fired thermal oil heater[J]. Energy Conversion and Management, 2015, 98:303-313.
[4] LEE H, KUNKLE C, WAGNER M F, et al. Solar receiver design for thermoelectric power generation and waste heat utilization: USA, 20150136194[P]. 2015-05-21.
[5] ROWE D M. Thermoelectrics, an environmentally-friendly source of electrical power[J]. Renewable Energy, 1999, 16(4):1251-1256.
[6] SADEGHI H, SANGTARASH S, LAMBERT C J. Oligoyne molecular junctions for efficient room temperature thermoelectric power generation[J]. Nano Letters, 2015, 15(11):7467-7472.
[7] GRAUDEUR D, CRANE S, HUNG B, et al. Automotive waste heat conversion to electric power using skutterudite, TAGS, PbTe and BiTe[J]. Thermoelectrics, 2006(25):343-348.
[8] WOO B C, LEE H W. Relation between electric power and temperature difference for thermoelectric generator[J]. International Journal of Modern Physics B, 2003,17(8):1421-1426.
[9] 马宗正,王新莉. 基于温差发电技术的发动机能量回收研究[J]. 电源技术,2014,38(10):1975-1978. MA Zongzheng, WANG xinli. Development and status of energy recycle for internal combustion engine based on thermoelectric generation[J]. Chinese Journal of Power Sources, 2014, 38(10):1975-1978.
[10] 李茂德,屈健,李玉东,等.接触效应对小型半导体温差发电器性能的影响[J]. 半导体学报,2005,26(12):2440-2444. LI Maode, QU Jian, LI Yudong, et al. Influence of contact effects on properties of a small thermoelectric power generator[J]. Chinese Journal Semiconductors, 2005, 26(12):2440-2444.
[11] MATSUBARA K. The performance of a segmented thermoelectric convertor using Yb-based filled skutterudites and Bi2Te3-based materials[C] // MRS Proceedings. London, England: Cambridge University Press, 2001, 691:1-9.
[12] RUTTANAPUN C, JINDAJITAWAT P, BURANASIRI P, et al. Preparation, characterization and finite element computation of Cu(Al1/2Fe1/2)O2 delafossite oxide thermoelectric generator module[J]. Integrated Ferroelectrics, 2014, 156(1):102-104.
[13] LIU W, KIM H S, CHEN S, et al. N-type thermoelectric material Mg2Sn0.75Ge0.25for high power generation[J]. Proceedings of the National Academy of Sciences, 2015, 112(11):3269-3274.
[14] 全睿,谭保华,唐新峰,等. 汽车尾气温差发电装置中热电器件的试验研究[J]. 中国机械工程,2014,25(5):705-709. QUAN Rui, TAN Baohua, TANG Xinfeng, et al. Experimental study on thermoelectric modules used in automobile exhaust thermoelectric generator[J]. China Mechanical Engineering, 2014, 25(5):705-709.
[15] THACHER E, HELENBROOK B, KARRI M. et al. Testing of an automobile exhaust thermoelectric generator in a light truck[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2007, 221(1):95-107.
[16] DAI Dan, ZHOU Yixin, LIU Jing. Liquid metal based thermoelectric generation system for waste heat recovery[J]. Renewable Energy, 2011, 36(12):3530-3536.
[17] WOJCIECHOWSKI T, SCHMODT M, ZYBALA R, et al. Comparison of waste heat recovery from the exhaust of a spark ignition and a diesel engine[J]. Journal of Electronic Materials, 2010, 39(9):2034-2038.
[18] GOULD C A, SHAMMAS N Y A, GRAINGERS, et al. Thermoelectric power generation: properties, application and novel TCAD simulation[C] // Power Electronics and Applications(EPE 2011), Birmingham, England: IEEE Press, 2011: 1-10.
[19] 褚泽. 废热半导体温差发电技术的研究与开发[D].重庆:重庆大学,2008. CHU Ze. Development and investigation of thermoelectric based on waster heat[D]. Chongqing: Chongqing University, 2008.
[20] 邓亚东,范韬,郭珣,等.汽车尾气温差发电装置及热电模块的布置研究[J].武汉理工大学学报(信息与管理工程版),2010,32(2):265-267. DENG Yadong, FAN Tao, GUO Xu, et al. Arrangement of TEG device and thermoelectric module[J]. Journal of Wuhan University of Technology(Information & Management Engineering), 2010, 32(2):265-267.
[21] 周泽广,朱冬生,吴红霞,等.温差发电器的传热特性分析与实验研究[J]. 华南理工大学学报(自然科学版),2011,39(11):47-52. ZHOU Zeguang, ZHU Dongsheng, WU Hongxia, et al. Heat transfer characteristic analysis and experimental investigation of thermoelectric generator[J]. Journal of South China University of Technology(Natural Science Edition), 2011, 39(11):47-52.
[22] 许进峰. ANSYS Workbench 15.0完全自学一本通[M].北京: 电子工业出版社, 2014:125-140.
[1] 宋凯明1,于健2,丁冬升1,初少玲3,周玉强4. 基于VOF方法的赛艇艇型优化[J]. 山东大学学报(工学版), 2012, 42(4): 67-73.
[2] 马宗正,程勇*. 进气谐振器对汽油机进气性能影响的计算分析[J]. 山东大学学报(工学版), 2011, 41(1): 162-166.
[3] 纪少波,程勇,唐娟,吴波,郑希江 . 两阶段喷油在催化转化器性能考评台架中的应用[J]. 山东大学学报(工学版), 2007, 37(2): 43-46 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[2] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[3] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[4] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[5] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[6] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[7] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[8] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[9] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .
[10] 姚占勇,商庆森,赵之仲,贾朝霞 . 界面条件对半刚性沥青路面结构应力分布的影响[J]. 山东大学学报(工学版), 2007, 37(3): 93 -99 .