山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 64-71.doi: 10.6040/j.issn.1672-3961.0.2019.156
王寒冰1(),刘晓辉2,田民丽1,王桂华1,于泽庭1,*(),纪少波1
Hanbing WANG1(),Xiaohui LIU2,Minli TIAN1,Guihua WANG1,Zeting YU1,*(),Shaobo JI1
摘要:
为提高固体燃料电池(solid oxide fuel cell, SOFC)的能源综合利用效率,提出一种基于SOFC循环、燃气轮机和吸收式制冷机的功冷联供系统。建立联供系统的热力学模型,给出设计工况下的热力学参数,对联供系统进行模拟分析。结果表明,在设计工况下,燃料电池发电效率、联供系统总发电效率和功冷联供效率分别为46.81%、54.53%和72.24%。燃料电池进口温度为620 ℃时,联供系统取得最大总发电效率和功冷联供效率,分别为54.66%和72.42%;在燃料电池进口温度为600 ℃时,联供系统输出制冷量最多。
中图分类号:
1 |
张亚媛, 张沛龙, 葛静. 燃料电池应用现状及发展前景[J]. 新材料产业, 2014, (6): 65- 68.
doi: 10.3969/j.issn.1008-892X.2014.06.017 |
ZHANG Yayuan , ZHANG Peilong , GE Jing , et al. Application status and development prospect of fuel cells[J]. New Material Industry, 2014, (6): 65- 68.
doi: 10.3969/j.issn.1008-892X.2014.06.017 |
|
2 |
贺华, 赵景联. 燃料电池的开发现状及其发展前景[J]. 石化技术与应用, 2001, 19 (3): 205- 209.
doi: 10.3969/j.issn.1009-0045.2001.03.019 |
HE Hua , ZHAO Jinglian . Current aspects and treds in fuel cell[J]. Petroleum Technology and Application, 2001, 19 (3): 205- 209.
doi: 10.3969/j.issn.1009-0045.2001.03.019 |
|
3 |
KAILA R K , AOI K . Autothermal reforming of simulated gasoline and diesel fuels[J]. International Journal of Hydrogen Energy, 2006, 31 (13): 1934- 1941.
doi: 10.1016/j.ijhydene.2006.04.004 |
4 | MOSELEY P T . Fuel Cell systems explained[J]. Journal of Power Sources, 2001, 93 (1): 285. |
5 | 于泽庭, 蒙青山, 张承慧, 等. CO2近零排放固体氧化物燃料电池冷热电联供系统的性能分析[J]. 中国电机工程学报, 2017, 37 (1): 200- 208. |
YU Zeting , MENG Qingshan , ZHANG Chenghui , et al. Performance analysis of CO2 near zero emission solid oxide fuel cell combined cooling heating and power system[J]. Journal of Electrical Engineering of China, 2017, 37 (1): 200- 208. | |
6 |
MENG Q , HAN J , KONG L , et al. Thermodynamic analysis of combined power generation system based on SOFC/GT and transcritical carbon dioxide cycle[J]. International Journal of Hydrogen Energy, 2017, 42 (7): 4673- 4678.
doi: 10.1016/j.ijhydene.2016.09.067 |
7 | ZHANG Shiqi , LIU Haolun , LIU Meili , et al. An efficient integration strategy for a SOFC-GT-SORC combined system with performance simulation and parametric optimization[J]. Applied Thermal Engineering, 2017, 121 (1): 314- 324. |
8 |
YAN Zhequan , ZHAO Pan , WANG Jiangfeng , et al. Thermodynamic analysis of an SOFC-GT-ORC integrated power system with liquefied natural gas as heat sink[J]. International Journal of Hydrogen Energy, 2013, 38 (8): 3352- 3363.
doi: 10.1016/j.ijhydene.2012.12.101 |
9 | RANJBAR F , CHITSAZ A , MAHMOUDI S M S , et al. Energy and exergy assessments of a novel trigeneration system based on a solid oxide fuel cell[J]. Energy Conversion & Management, 2014, 87, 318- 327. |
10 |
YU Zeting , HAN Jitian , CAO Xianqi . Investigation on performance of an integrated solid oxide fuel cell and absorption chiller tri-generation system[J]. International Journal of Hydrogen Energy, 2011, 36 (19): 12561- 12573.
doi: 10.1016/j.ijhydene.2011.06.147 |
11 |
ZHAO Hongbin , JIANG Ting , HOU Hucan . Performance analysis of the SOFC-CCHP system based on H2O/Li—Br absorption refrigeration cycle fueled by coke oven gas[J]. Energy, 2015, 91, 983- 993.
doi: 10.1016/j.energy.2015.08.087 |
12 |
AL-SULAIMAN F A , DINCER I , HAMDULLAHPUR F . Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle[J]. International Journal of Hydrogen Energy, 2010, 35 (10): 5104- 5113.
doi: 10.1016/j.ijhydene.2009.09.047 |
13 |
AL-SULAIMAN F A , DINCER I , HAMDULLAHPUR F . Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production[J]. Journal of Power Sources, 2010, 195 (8): 2346- 2354.
doi: 10.1016/j.jpowsour.2009.10.075 |
14 | 段立强, 张潇元, 杨勇平, 等. 基于分析的CO2零排放SOFC复合动力系统研究[J]. 工程热物理学报, 2011, 32 (5): 745- 749. |
DUAN Liqiang , ZHANG Xiaoyuan , YANG Yongping , et al. Exergy analysis of zero CO2 emission SOFC hybrid power system[J]. Journal of Engineering Thermophysics, 2011, 32 (5): 745- 749. | |
15 |
CHITSAZ A , HOSSEINPOUR J , ASSADI M . Effect of recycling on the thermodynamic and thermoeconomic performances of SOFC based on trigeneration systems; a comparative study[J]. Energy, 2017, 124, 613- 624.
doi: 10.1016/j.energy.2017.02.019 |
16 |
DUAN Liqiang , HUANG Kexin , ZHANG Xiaoyuan , et al. Comparison study on different SOFC hybrid systems with zero-CO2 emission[J]. Energy, 2013, 58, 66- 77.
doi: 10.1016/j.energy.2013.04.063 |
17 |
OZCAN H , DINCER I . Performance evaluation of an SOFC based trigeneration system using various gaseous fuels from biomass gasification[J]. International Journal of Hydrogen Energy, 2015, 40 (24): 7798- 7807.
doi: 10.1016/j.ijhydene.2014.11.109 |
18 |
KHANI L , MAHMOUDI S M S , CHITSAZ A , et al. Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell[J]. Energy, 2016, 94, 64- 77.
doi: 10.1016/j.energy.2015.11.001 |
19 |
CHATRATTANAWET N , SAEBEA D . Performance and environmental study of a biogas-fuelled solid oxide fuel cell with different reforming approaches[J]. Energy, 2018, 146, 131- 140.
doi: 10.1016/j.energy.2017.06.125 |
[1] | 郭英伦,郗富强,苏瑞智,李国祥,于泽庭. 基于LNG冷与燃料电池余热利用的TRCC串联系统[J]. 山东大学学报 (工学版), 2019, 49(5): 52-57. |
[2] | 张磊,孙奉仲*,高明. 侧风对冷却塔性能影响的特异性定量分析方法[J]. 山东大学学报(工学版), 2013, 43(5): 98-103. |
[3] | 张玉军,张兰,蒋三平. 采用凝胶注模工艺低温合成锶掺杂的锰酸镧粉体[J]. 山东大学学报(工学版), 2009, 39(3): 62-66. |
[4] | 于泽庭,韩吉田,王振 . 熔融碳酸盐燃料电池总能系统的热力学分析[J]. 山东大学学报(工学版), 2006, 36(6): 28-31 . |
|