山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (2): 122-130.doi: 10.6040/j.issn.1672-3961.0.2018.211
• 机器学习与数据挖掘 • 上一篇
Zhongwei ZHANG(),Hongyan MEI*(),Jun ZHOU,Huiping JIA
摘要:
针对事务数据库中连续型数值属性难以划分且规则提取效率较低的问题,提出一种交叉、变异种群协同进化的量化关联规则提取方法。利用帕累托原理的非支配排序对种群个体进行优化。利用个体相似度的基因型、表现型控制交叉种群中个体的配对,对变异种群采用水平集概念进行分割,并针对个体优劣分别采取单点突变和多点突变两种突变方式增强个体多样性。利用精英种群保存交叉种群与变异种群中的优秀个体并对其求取帕累托最优解集。在不同数据集上的仿真结果表明,该算法获得规则在性能和数量上达到较好的均衡,且能够有效覆盖数据集,验证了算法的有效性和可行性。
中图分类号:
1 |
SRIKANT R , AGRAWAL R . Mining quantitative association rules in large relational tables[J]. ACM SIGMOD Record, 1996, 25 (2): 1- 12.
doi: 10.1145/235968 |
2 | HAN Jiawei , PEI Jian , YIN Yiwen , et al. Mining frequent patterns without candidate generation: a frequent-pattern tree approach[J]. Data Mining and Knowledge Discovery, 2004, 8 (1): 53- 87. |
3 |
HU Yichung , CHEN Rueyshun , TZENG Gwohshiung . Discovering fuzzy association rules using fuzzy partition methods[J]. Knowledge-Based Systems, 2003, 16 (3): 137- 147.
doi: 10.1016/S0950-7051(02)00079-5 |
4 | CAO Hui, SI Gangquan, ZHANG Yanbin, et al. A density-based quantitative attribute partition algorithm for association rule mining on industrial database[C]//2008 American Control Conference. Seattle, USA: IEEE, 2008: 75-80. |
5 | KAYAA M , ALHAJJB R . Genetic algorithm based framework for mining fuzzy aAssociation rules[J]. Fuzzy Sets & Systems, 2005, 152 (3): 587- 601. |
6 |
周丽娟, 石倩, 葛学彬, 等. 基于聚类的模糊遗传挖掘算法的研究[J]. 计算机工程与应用, 2010, 46 (13): 118- 121.
doi: 10.3778/j.issn.1002-8331.2010.13.035 |
ZHOU Lijuan , SHI Qian , GE Xuebin , et al. Cluster-based evaluation in fuzzy-genetic data mining[J]. Computer Engineering & Applications, 2010, 46 (13): 118- 121.
doi: 10.3778/j.issn.1002-8331.2010.13.035 |
|
7 |
HONG Tzungpei , CHEN Chunhao , WU Yulung , et al. A GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership functions[J]. Soft Computing, 2006, 10 (11): 1091- 1101.
doi: 10.1007/s00500-006-0046-x |
8 | ALCALÁ-FDEZ J , ALCALÁ R , GACTO M J , et al. Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms[J]. Fuzzy Sets & Systems, 2009, 160 (7): 905- 921. |
9 | PALACIOS A M , PALACIOS J , LU IS , et al. Genetic learning of the membership functions for mining fuzzy association rules from low quality data[J]. Information Sciences, 2015, 295 (C): 358- 378. |
10 | JESUS M J D , GÁMEZ J A , GONZÁLEZ P , et al. On the discovery of association rules by means of evolutionary algorithms[J]. Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery, 2011, 1 (5): 397- 415. |
11 | ASHISH Ghosh , BHABESH Nath . Multi-objective rule mining using genetic algorithms[J]. Information Sciences, 2004, 163 (1/2/3): 123- 133. |
12 |
ALATAS B , AKIN E . Rough particle swarm optimization and its applications in data mining[J]. Soft Computing, 2008, 12 (12): 1205- 1218.
doi: 10.1007/s00500-008-0284-1 |
13 | ALATAS B , AKIN E , KARCI A . MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules[J]. Applied Soft Computing, 2008, 8 (1): 646- 656. |
14 | MINAEI-BIDGOLI B , BARMAKI R , NASIRI M . Mining numerical association rules via multi-objective genetic algorithms[J]. Information Sciences, 2013, 233 (2): 15- 24. |
15 | DEB K , PRATAP A , AGARWAL S , et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions Evolutionary Computation, 2002, 6 (2): 182- 197. |
16 | 吴琼, 曾庆鹏. 基于多目标烟花算法的关联规则挖掘[J]. 模式识别与人工智能, 2017, 30 (4): 365- 376. |
WU Qiong , ZENG Qingpeng . Association rules mining based on multi-objective fireworks optimization algorithm[J]. Pattern Recognition and Artificial Intelligence, 2017, 30 (4): 365- 376. | |
17 | SHANG Ronghua , WANG Yuying , WANG Jia , et al. A multi-population cooperative coevolutionary algorithm for multi-objective capacitated arc routing problem[J]. Information Sciences, 2014, 277 (2): 609- 642. |
18 |
MEHTA S B , CHAUDHURY S , BHATTACHARYYA A , et al. Tissue classification in magnetic resonance images through the hybrid approach of michigan and pittsburg genetic algorithm[J]. Applied Soft Computing, 2011, 11 (4): 3476- 3484.
doi: 10.1016/j.asoc.2011.01.021 |
19 | NASIRI M , TAGHAVI L S , MINAEE B . Numeric multi-objective rule mining using simulated annealing algorithm[J]. Journal of Convergence Information Technology, 2011, 5 (1): 60- 68. |
20 | MATA J, ALVAREZ J, RIQUELME J. Discovering numeric association rules via evolutionary algorithm[C]// Advances in Knowledge Discovery and Data Mining. Berlin, Germany: Springer, 2002: 40-51. |
[1] | 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20-26. |
[2] | 钱淑渠,武慧虹,徐国峰,金晶亮. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4): 1-9. |
[3] | 林江豪,周咏梅,阳爱民,陈锦. 基于词向量的领域情感词典构建[J]. 山东大学学报(工学版), 2018, 48(3): 40-47. |
[4] | 崔晓松,王颖,孟佳, 邹丽. 基于语言值相似度推理的网络商家自评价方法[J]. 山东大学学报(工学版), 2018, 48(1): 1-7. |
[5] | 王飞,徐健,李伟,汪新浩,施啸寒. 基于分布式储能系统的风储滚动优化调度方法[J]. 山东大学学报(工学版), 2017, 47(6): 89-94. |
[6] | 宋洋,钟麦英. 基于改进距离相似度的故障可分离性分析方法[J]. 山东大学学报(工学版), 2017, 47(5): 103-109. |
[7] | 庞人铭,王波,叶昊,张海峰,李明亮. 基于PCA相似度和谱聚类相结合的高炉历史数据聚类[J]. 山东大学学报(工学版), 2017, 47(5): 143-149. |
[8] | 李真伟,崔国忠,郭从洲,虞昌浩. 基于交替方向乘子法的图像盲复原[J]. 山东大学学报(工学版), 2017, 47(4): 14-18. |
[9] | 裴小兵,陈慧芬,张百栈,陈孟辉. 改善式BVEDA求解多目标调度问题[J]. 山东大学学报(工学版), 2017, 47(4): 25-30. |
[10] | 马帅依凡,赵子健. 基于人工标记的手术导航仪[J]. 山东大学学报(工学版), 2017, 47(3): 63-68. |
[11] | 邓冠龙,杨洪勇,张淑宁,顾幸生. 零等待flow shop多目标调度的混合差分进化算法[J]. 山东大学学报(工学版), 2016, 46(5): 21-28. |
[12] | 徐庆, 段利国, 李爱萍, 阴桂梅. 基于实体词语义相似度的中文实体关系抽取[J]. 山东大学学报(工学版), 2015, 45(6): 7-15. |
[13] | 刘金慧. 基于多目标非线性函数某深基坑参数反演分析[J]. 山东大学学报(工学版), 2015, 45(4): 75-83. |
[14] | 董红斌, 张广江, 逄锦伟, 韩启龙. 一种基于协同进化方法的聚类集成算法[J]. 山东大学学报(工学版), 2015, 45(2): 1-9. |
[15] | 钱肃驰, 彭甫镕, 陆建峰. 基于语义相似度的标签优化[J]. 山东大学学报(工学版), 2015, 45(2): 37-42. |
|