您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 14-18.doi: 10.6040/j.issn.1672-3961.0.2017.008

• • 上一篇    下一篇

基于交替方向乘子法的图像盲复原

李真伟1,崔国忠1,郭从洲1*,虞昌浩2   

  1. 1. 中国人民解放军信息工程大学理学院, 河南 郑州 450001;2. 中国人民解放军信息工程大学指挥军官基础教育学院, 河南 郑州 450001
  • 收稿日期:2017-01-05 出版日期:2017-08-20 发布日期:2017-01-05
  • 通讯作者: 郭从洲(1980— ),男,河南西华人,讲师,博士研究生,主要研究方向为图像复原,超分辨率重建.E-mail:czguo0618@sina.cn E-mail:13260280885@163.com
  • 作者简介:李真伟(1993— ),男,江苏无锡人,硕士研究生,主要研究方向为图像复原.E-mail:13260280885@163.com

Blind image restoration using alternating direction method of multipliers

LI Zhenwei1, CUI Guozhong1, GUO Congzhou1*, YU Changhao2   

  1. 1. School of Science, The PLA Information Engineering University, Zhengzhou 450001, Henan, China;
    2. School of Command Officer Basic Education, The PLA Information Engineering University, Zhengzhou 450001, Henan, China
  • Received:2017-01-05 Online:2017-08-20 Published:2017-01-05

摘要: 为了克服正则化理论的全变分图像盲复原模型中出现的运行效率低、效果不好等问题,提出一种基于交替方向乘子法的盲复原迭代算法。该算法通过交替迭代的方式,将复原图像与点扩散函数交替估计,同时不必更新惩罚项从而提高了运行速度和复原的质量。计算同时加入了对点扩散函数的归一化和阈值约束条件以及对图像的正定性条件。数值试验中,对不同模糊类型的图像进行了盲复原处理,并与已有的其他盲复原方法进行了比较。从主观评价能够发现,提出的算法能够改进图像的质量,提高其分辨率;通过客观指标比较,峰值信噪比(peak signal to noise ratio, PSNR)最大能够提高1.2 dB,结构相似度(structural similarity index, SSIM)最大提高1%,计算时间最大节约一半左右。

关键词: 结构相似度, 交替方向乘子算法, 全变分正则化, 峰值信噪比, 盲复原, 点扩散函数

Abstract: In order to overcome the low operating efficiency and poor reconstruction quality in the total variation blind image restoration model of the regularization theory, an iterative algorithm of blind restoration based on alternating direction method of multipliers algorithm was proposed. The restored image and the point spread function were estimated alternatively by alternating iteration to improve the running speed and reconstruction quality through a way without updating the penalty term. The normalization and threshold constraint condition of the point spread function, and the positive definite condition of the image were added while calculating. In the numerical experimentation, the blind restoration of the images with different fuzzy types were carried out, and it was compared with other existing blind image restoration methods. The proposed algorithm could improve the quality and the resolution ratio of the image. Through objective comparison, the peak signal to noise ratio of the proposed algorithm could be increased by 1.2 dB at most,the average structural similarity was increased maximumly by 1% and the computation time was saved maximumly by about half.

Key words: blind image restoration, point spread function, alternating direction method of multipliers algorithm, structural similarity index, total variation regularization, peak signal to noise ratio

中图分类号: 

  • TN911.73
[1] WROBEL P, CZYZYCKI M. Direct deconvolution approach for depth profiling ofelement concentrations in multi-layered materials by confocal micro-beam X-ray fluorescence spectrometry[J]. Talanta, 2013, 113: 62-67.
[2] SHIN H C, PRAGER R, GOMERSALL H, et al. Estimation of average speed of sound using deconvolution of medical ultrasound data[J]. Ultrasound in Medicine & Biology, 2010, 36(4): 623-636.
[3] BIOUCAS-DIAS J M, PLAZA A, CAMPS-VALLS G, et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(2):6-36.
[4] 贺妍斐. 基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究[D]. 南京:南京信息工程大学,2015. HE Yanfei. Research on image restoration method based on sparse representation and adaptive reciprocal cell[D].Nanjing: Nanjing University of Information Science and Technology, 2015.
[5] ZHAO X Y, SUN D, TOH K C. A newton-CG augmented lagrangian method for semidefinite programming[J]. SIAM Journal on Optimization, 2010, 20(4): 1737-1765.
[6] 刘国良, 邵云龙. 基于伸缩梯度投影的天文图像复原改进算法[J]. 传感器与微系统, 2016,35(4):134-136. LIU Guoliang, SHAO Yunlong.Improved astronomical image restoration algorithm based on scaled gradient projection[J].Transducer and Microsystem Technologies, 2016, 35(4):134-136.
[7] CHEN Q, MONTESINOS P, SUN Q S, et al. Adaptive total variation denoising based on difference curvature[J]. Image and Vision Computing, 2010, 28(3): 298-306.
[8] 李旭超, 宋博. 原始-对偶模型的牛顿迭代原理与图像恢复[J]. 电子学报, 2015(10):1984-1993. LI Xuchao, SONG Bo.Newton iterative principle of primal-dual model and image restoration [J].Acta Electronica Sinica, 2015(10):1984-1993.
[9] WEN Y W, CHAN R H, YIP A M. A primal-dual method for total-variation-based wavelet domain inpainting[J].IEEE Transactions on Image Processing, 2012, 21(1): 106-114.
[10] TAO M, YANG J. Alternating direction algorithms for total variation deconvolution in image reconstruction[EB/OL] (2009-11-17).[2016-07-15]. http://www.optimization-online.org/DB-HTML/2009/11/2463.html.
[11] LI W, LI Q, GONG W, et al. Total variation blind deconvolution employing split bregman iteration[J]. Journal of Visual Communication & Image Representation, 2012, 23(3):409-417.
[12] 李权利. 全变差正则化盲图像复原技术研究[D].重庆: 重庆大学, 2012. LI Quanli.Total variation blind image restoration[D].Chongqing: Chongqing University, 2012.
[13] SHI Y, CHANG Q. Efficient algorithm for isotropic and anisotropic total variation deblurring and denoising[J]. Journal of Applied Mathematics, 2013, 2013:1-14.
[14] JIAO Y, JIN Q, LU X, et al. Alternating direction method of multipliers for linear inverse problems[J]. Siam Journal on Numerical Analysis, 2016, 54(4):2114-2137.
[15] XU Y, HUANG T Z, LIU J, et al. Split bregman iteration algorithm for image deblurring using fourth-order total bounded variation regularization model[J]. Journal of Applied Mathematics, 2013, 2013(3):417-433.
[1] 刘一方1,2, 张云峰1,2*, 迟静1,2,张彩明1,2. 基于SSLUT的颜色空间转换的快速算法[J]. 山东大学学报(工学版), 2013, 43(1): 41-47.
[2] 杨栋, 杨公平, 尹义龙*, 张利明. 基于多级结构相似度的快速指纹匹配算法[J]. 山东大学学报(工学版), 2010, 40(2): 11-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!