您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 96-103.doi: 10.6040/j.issn.1672-3961.0.2017.081

• • 上一篇    下一篇

四轮独立驱动电动汽车自适应驱动防滑控制

张博涵,陈哲明*,付江华,陈宝   

  1. 重庆理工大学车辆工程学院, 重庆 401320
  • 收稿日期:2017-03-02 出版日期:2018-02-20 发布日期:2017-03-02
  • 通讯作者: 陈哲明(1978— ),男,重庆合川人,副教授,博士,主要研究方向为汽车系统动力学控制. E-mail:czm.415@163.com E-mail:zhangbohan0128@163.com
  • 作者简介:张博涵(1992— ),男,山东淄博人,硕士研究生,主要研究方向为汽车系统动力学控制. E-mail:zhangbohan0128@163.com
  • 基金资助:
    重庆市研究生科研创新资助项目(CYS17276);国家自然科学基金青年科学基金资助项目(51205433)

Self-adaption acceleration slip regulation control of four-wheel independently-driving electric vehicle

ZHANG Bohan, CHEN Zheming*, FU Jianghua, CHEN Bao   

  1. School of Vehicle Engineering, Chongqing University of Technology, Chongqing 401320, China
  • Received:2017-03-02 Online:2018-02-20 Published:2017-03-02

摘要: 驱动防滑控制研究存在建模方法单一,控制器的目标滑转率不能与变化的路面条件相适应,未考虑车辆轴荷转移对车轮附着性能的影响等问题。为解决上述问题,建立基于Carsim与Matlab/Simulink联合仿真的整车动力学模型;设计基于双模糊算法的自适应驱动防滑控制器,控制器中加入路面识别模块,能够估计变化的路面附着条件,根据估计结果选择最优的目标理想滑转率,实现对当前路面的自适应控制;分别设计前后轴驱动防滑控制器,实现前后轴差别控制。针对不同工况,对建立的整车模型及驱动防滑控制器进行验证。

关键词: 联合仿真, 路面识别, 自适应, 模糊控制, 驱动防滑

Abstract: There are many problems in the research of the acceleration slip regulation control, such as the single modeling method, the ideal slip rate of the controller can not match the changing road conditions, and the influence of the axle load transfer on the wheel adhesion performance is not taken into account. In order to solve the above problems, the vehicle dynamics model based on Carsim and Matlab/Simulink co-simulation was established. A self-adaption acceleration slip regulation controller based on double fuzzy algorithm was designed. The pavement recognition module could be added to the controller to estimate the changeable pavement attachment condition. Based on the estimation results, the optimal target slipping rate could be selected to realize the self-adaptive control. The acceleration slip regulation control algorithm of front-rear axle drive was designed separately to realize the differential control of front and rear axles. According to the different working conditions, the vehicle model and the acceleration slip regulation controller were verified.

Key words: road identification, co-simulation, acceleration slip regulation, fuzzy control, self-adaption

中图分类号: 

  • U461.6
[1] 李刚, 宗长富. 四轮独立驱动轮毂电机电动汽车研究综述[J]. 辽宁工业大学学报(自然科学版), 2014(1):47-52. LI Gang, ZONG Changfu. Review on electric vehicle with four-wheel independent drive in-wheel motors[J]. Journal of Liaoning Institute of Technology(Natural Science Edition), 2014(1):47-52.
[2] 殷国栋, 金贤建, 张云. 分布式驱动电动汽车底盘动力学控制研究综述[J]. 重庆理工大学学报, 2016, 30(8):13-19. YIN Guodong, JIN Xianjian, ZHANG Yun. Overview for chassis vehicle dynamics control of distributed drive electric vehicle[J]. Journal of Chongqing University of Technology(Natural Science), 2016, 30(8):13-19.
[3] HE H, PENG J, XIONG R, et al. An acceleration slip regulation strategy for four-wheel drive electric vehicles based on sliding mode control[J]. Energies, 2014, 7(6):3748-3763.
[4] 马高峰, 李刚, 韩海兰. 基于CarSim的四轮轮毂电机电动汽车建模方法研究[J]. 农业装备与车辆工程, 2015, 53(7):8-11. MA Gaofeng, LI Gang, HAN Hailan. Simulation model research for four-wheel hub motor electric vehicle based on Simulink and Carsim[J]. Agricultural Equipment & Vehicle Engineering, 2015, 53(7):8-11.
[5] 熊璐, 陈晨, 冯源,等. 基于Carsim/Simulink联合仿真的分布式驱动电动汽车建模[J]. 系统仿真学报, 2014, 26(5):1143-1148. XIONG Lu, CHEN Chen, FENG Yuan, et al. Modeling of distributed drive electric vehicle based on co-simulation of Carsim/Simulink[J]. Journal of System Simulation, 2014, 26(5):1143-1148.
[6] 王博, 卢萍萍, 管欣,等. 路面附着系数识别方法发展现状综述[J]. 汽车技术, 2014(8):1-7. WANG Bo, LU Pingping, GUAN Xin, et al. Review on the development status of road adhesion coefficient identification approach [J]. Automobile Technology, 2014(8):1-7.
[7] 褚文博, 李深, 江青云,等. 基于多信息融合的全轮独立电驱动车辆车速估计[J]. 汽车工程, 2011, 33(11):962-966. CHU Wenbo, LI Shen, JIANG Qingyun,et al. Speed estimation for all-wheel drive vehicles based on multi-information fusion [J]. Automotive Engineering, 2011, 33(11):962-966.
[8] 郭文涛.轮毂电机电动汽车驱动防滑控制研究[D]. 锦州: 辽宁工业大学, 2016. GUO Wentao. The ASR control research on EV with in-wheel motors[D]. Jinzhou: Liaoning University of Technology, 2016.
[9] JIANG Z J, CHEN X, LI D W. Acceleration slip regulation of four-wheel drive electric vehicle based on road automatic identification[J]. Journal of Chongqing University of Technology(Natual Science), 2012.
[10] 马彬, 陈勇, 龚国庆. 四轮驱动电动车驱动防滑模糊控制研究[J]. 计算机仿真, 2016, 33(3):144-148. MA Bin, CHEN Yong, GONG Guoqing. Study on fuzzy control of driving antiskid for four-wheel drive electric vehicle[J]. Computer Simulation, 2016, 33(3):144-148.
[11] 张弦, 罗禹贡, 范晶晶,等. 电动车辆驱动防滑控制方法的研究[J]. 车辆与动力技术, 2007(3):13-19. ZHANG Xian, LUO Yugong, FAN Jingjing, et al. A research on optimal slip ratio identification based traction control system implemented on EV[J]. Vehicle & Power Technology, 2007(3):13-19.
[1] 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报(工学版), 2018, 48(5): 32-37.
[2] 钱淑渠,武慧虹,徐国峰,金晶亮. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4): 1-9.
[3] 马驰骋,郭宗和,刘灿昌,代祥俊,张希农,毛伯永. 变质量弹性梁结构动力学特性[J]. 山东大学学报(工学版), 2018, 48(4): 78-87.
[4] 马汉杰,林霞,胥晓晖,张健,张智晟. 基于自适应粒子群算法的智能家居管理系统负荷优化模型[J]. 山东大学学报(工学版), 2017, 47(6): 57-62.
[5] 叶丹,张天予,李奎. 全局信息未知的多智能体自适应容错包容控制[J]. 山东大学学报(工学版), 2017, 47(5): 1-6.
[6] 褚振忠,朱大奇. 基于自适应区域跟踪的自主式水下机器人容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 57-63.
[7] 任永峰,董学育. 基于自适应流形相似性的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2017, 47(3): 56-62.
[8] 唐庆顺,金璐,李国栋,吴春富. 基于自适应终端滑模控制器的机械手跟踪控制[J]. 山东大学学报(工学版), 2016, 46(5): 45-53.
[9] 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51.
[10] 赵志涛, 赵志诚, 王惠芳. 直流调速系统模糊自整定分数阶内模控制[J]. 山东大学学报(工学版), 2015, 45(5): 58-62.
[11] 杨秀林1,黄硕2*,邓苗1,张基宏1,3. 基于显著计算与自适应PCNN的图像融合方法[J]. 山东大学学报(工学版), 2014, 44(2): 35-42.
[12] 翟东海1,2,鱼江1,聂洪玉1,崔静静1,杜佳1. 基于相关性反馈的自适应热点话题追踪模型[J]. 山东大学学报(工学版), 2014, 44(1): 7-12.
[13] 夏海英1,杜海明2,徐鲁辉1,颜远辉1. 基于自适应词典学习和稀疏表示的人脸表情识别[J]. 山东大学学报(工学版), 2014, 44(1): 45-48.
[14] 戚世乐,王美清. 自适应分割弱边缘的活动轮廓模型[J]. 山东大学学报(工学版), 2013, 43(6): 17-20.
[15] 韦建明,胡云安,孙美美. 基于广义跟踪误差的一阶非线性时滞系统自适应迭代学习控制[J]. 山东大学学报(工学版), 2013, 43(6): 34-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!