您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 57-63.doi: 10.6040/j.issn.1672-3961.0.2017.210

• • 上一篇    下一篇

基于自适应区域跟踪的自主式水下机器人容错控制

褚振忠,朱大奇   

  1. 上海海事大学信息工程学院, 上海 201306
  • 收稿日期:2017-04-25 出版日期:2017-10-20 发布日期:2017-04-25
  • 作者简介:褚振忠(1986— ),男,博士,讲师,主要研究方向为水下机器人故障诊断与容错控制技术. E-mail:chu_zhenzhong@163.com
  • 基金资助:
    国家自然科学基金青年基金资助项目(51509150);上海市自然科学基金资助项目(15ZR1419700)

Fault-tolerant control of autonomous underwater vehicle based on adaptive region tracking

CHU Zhenzhong, ZHU Daqi   

  1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
  • Received:2017-04-25 Online:2017-10-20 Published:2017-04-25

摘要: 研究自主式水下机器人(autonomous underwater vehicle, AUV)的推进器自适应区域跟踪容错控制方法。 与传统的自主式水下机器人容错控制方法不同,采用区域跟踪控制思想,将控制目标设定为以期望轨迹为中心的空间区域。 针对系统中存在的不确定性及推进器故障问题,采用神经网络进行在线辨识。 考虑到推进器故障时存在推力饱和而导致神经网络学习发散的问题,提出一种包含饱和因子的神经网络权值调整方法。 通过仿真,对所提方法的有效性进行验证。

关键词: 容错控制, 推进器, 区域跟踪, 自主式水下机器人, 自适应

Abstract: An adaptive region tracking fault-tolerant control for the thrusters of autonomous underwater vehicle was proposed. Different from the traditional fault-tolerant control methods of autonomous underwater vehicle, the region tracking control theory was adopted, and the control target was designed as a spatial region. For the uncertainty and thruster fault in the system, the neural network was used to identify them online. Considering the problem of the divergence of neural network caused by the thrust saturation during the thruster fault, a neural network weight adjustment method based on a saturation factor was proposed. The effectiveness of the proposed method was verified by simulation.

Key words: fault-tolerant control, autonomous underwater vehicle, thrusters, region tracking, adaptive

中图分类号: 

  • TP27
[1] 朱大奇, 刘乾, 胡震. 无人水下机器人可靠性控制技术[J]. 中国造船,2009,50(2):183-192. ZHU Daqi, LIU Qian, HU Zhen. Reliability control technology of unmanned underwater vehicles[J]. Shipbuilding of China, 2009, 50(2):183-192.
[2] CORRADINI M L, CRISTOFARO A. A nonlinear fault-tolerant thruster allocation architecture for underwater remotely operated vehicles[J]. IFAC-PapersOnLine, 2016, 49(23):285-290.
[3] WANG Y, ZHANG M, WILSON P, et al. Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thrust fault[J]. Ocean Engieering, 2015, 110(1):15-24.
[4] ZHANG M, LIU X, YIN B, et al. Adaptive terminal sliding mode based thruster fault tolerant control for underwater vehicle in time-varying ocean currents[J]. Journal of the Franklin Institute, 2015, 352(11):4935-4961.
[5] ISMAIL Z H, MOKHAR M B M, PUTRANTI V W E, et al. A robust dynamic region-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering, 2016, 111:155-165.
[6] CHEAH C C, WANG D Q. Region reaching control of robots: theory and experiments[C] // Proceedings of the 2005 IEEE International Conference on Robotics and Automation. [s.l.] :IEEE, 2005:974-979.
[7] LI X, HOU S P, CHEAH C C. Adaptive region tracking control for autonomous underwater vehicle[C] // Proceedings of the 2010 11th International Conference on Control. Automation Robotics & Vision. Singapore: IEEE, 2010:2129-2134.
[8] ISMAIL Z H, DUNNIGAN M W. A region boundary-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering, 2011, 38(11):2270-2280.
[9] CORRADINI M L, MONTERIU A, ORLANDO G. An actuator failure tolerant control scheme for an underwater remotely operated vehicle[J]. IEEE Transactions on Control Systems Technology, 2011, 19(5):1036-1046.
[10] KIM D W. Tracking of REMUS autonomous underwater vehicles with actuator saturations[J]. Automatica, 2015, 58:15-21.
[11] GAO J, PROCTOR A A, SHI Y, et al. Hierarchical model predictive image-based visual serving of underwater vehicles with adaptive neural network dynamic control[J]. IEEE Transactions on Cybernetics, 2016, 46(10):2323-2334.
[12] 俞建成, 张艾群, 王晓辉,等. 基于模糊神经网络水下机器人直接自适应控制[J]. 自动化学报, 2007, 33(8):840-846. YU Jiancheng, ZHANG Aiqun, WANG Xiaohui, et al. Direct adaptive control of underwater vehicles based on fuzzy neural networks[J]. Acta Automatica Sinica, 2007, 33(8):840-846.
[13] SUN Y S, RAN X R, LI Y M, et al. Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(3):243-251.
[14] 张铭钧, 褚振忠. 自主式水下机器人自适应区域跟踪控制[J]. 机械工程学院, 2013, 4(7):148-155. ZHANG Mingjun, CHU Zhenzhong. Adaptive region tracking control for autonomous underwater vehicle[J]. Journal of Mechanical Engineering, 2013, 4(7):148-155.
[15] HUANG X, YAN Y, ZHOU Y. Neural network-based adaptive second order sliding mode control of Lorentz-augmented spacecraft formation[J]. Neurocopution, 2017, 222(26):191-203.
[16] JIA C, LI X, WANG K, et al. Adaptive control of nonlinear system using online error minimum neural networks[J]. ISA Transactions, 2016, 65:125-132.
[17] PODDER T K, SARKAR N. Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy[J]. Robotics and Autonomous Systems, 2001, 34(1):39-52.
[1] 牟廉明. 自适应特征选择加权k子凸包分类[J]. 山东大学学报(工学版), 2018, 48(5): 32-37.
[2] 钱淑渠,武慧虹,徐国峰,金晶亮. 计及排放的动态经济调度免疫克隆演化算法[J]. 山东大学学报(工学版), 2018, 48(4): 1-9.
[3] 马驰骋,郭宗和,刘灿昌,代祥俊,张希农,毛伯永. 变质量弹性梁结构动力学特性[J]. 山东大学学报(工学版), 2018, 48(4): 78-87.
[4] 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80.
[5] 张博涵,陈哲明,付江华,陈宝. 四轮独立驱动电动汽车自适应驱动防滑控制[J]. 山东大学学报(工学版), 2018, 48(1): 96-103.
[6] 马汉杰,林霞,胥晓晖,张健,张智晟. 基于自适应粒子群算法的智能家居管理系统负荷优化模型[J]. 山东大学学报(工学版), 2017, 47(6): 57-62.
[7] 叶丹,张天予,李奎. 全局信息未知的多智能体自适应容错包容控制[J]. 山东大学学报(工学版), 2017, 47(5): 1-6.
[8] 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70.
[9] 黄成凯,杨浩,姜斌,程舒瑶. 一类复杂网络的协同容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 203-209.
[10] 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214.
[11] 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245.
[12] 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237.
[13] 任永峰,董学育. 基于自适应流形相似性的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2017, 47(3): 56-62.
[14] 唐庆顺,金璐,李国栋,吴春富. 基于自适应终端滑模控制器的机械手跟踪控制[J]. 山东大学学报(工学版), 2016, 46(5): 45-53.
[15] 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!