您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 215-222.doi: 10.6040/j.issn.1672-3961.0.2017.274

• • 上一篇    下一篇

动态核主元分析在无人机故障诊断中的应用

李明虎1,2,李钢2,钟麦英1*   

  1. 1.山东科技大学电气与自动化工程学院, 山东 青岛 266590;2.北京航空航天大学仪器科学与光电工程学院, 北京 100191
  • 收稿日期:2017-05-27 出版日期:2017-10-20 发布日期:2017-05-27
  • 通讯作者: 钟麦英(1965— ), 女,山东淄博人,教授,博士生导师,主要研究方向为故障诊断. E-mail: myzhong@buaa.edu.cn E-mail:liminghu@buaa.edu.cn
  • 作者简介:李明虎(1992— ),男,河北衡水人,硕士研究生,主要研究方向为故障诊断. E-mail: liminghu@buaa.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61333005,61421063);山东省泰山学者优势特色学科人才团队资助项目

Application of dynamic kernel principal component analysis in unmanned aerial vehicle fault diagnosis

LI Minghu1,2, LI Gang2, ZHONG Maiying1*   

  1. 1. School of electrical and Automation Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China;
    2. School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China
  • Received:2017-05-27 Online:2017-10-20 Published:2017-05-27

摘要: 飞行控制系统作为无人机(unmanned aerial vehicle, UAV)的核心子系统,对其进行故障诊断可以大大提高无人机的安全性和可靠性。在无人机数学模型未知或者不确定的情况下,数据驱动的故障诊断方法比基于模型的方法更实用。考虑无人机飞行控制系统是典型的非线性动态系统,采用一种非线性主元分析方法对其进行故障诊断。利用数据建立无人机飞行控制系统正常状态下的动态核主元模型,通过T2和SPE两种统计量实现故障检测;故障发生后,利用重构贡献图的方法进行故障分离。仿真试验证明,该方法能对典型的无人机执行器和传感器故障进行有效监测和诊断。与动态主元分析相比,动态核主元分析方法对微小故障更为敏感。

关键词: 无人机, 飞行控制系统, 动态核主元分析, 重构贡献图, 故障诊断

Abstract: The flight control system(FCS)was the core subsystem of unmanned aerial vehicle(UAV), performing FD for it could greatly improve the safety and reliability of UAV. When the mathematical model of UAV was unknown or uncertain, data-driven methods were more suitable than model-based FD methods. Considering that FCS of UAV was a typical nonlinear dynamic system, a nonlinear principal component analysis(PCA)method was used instead. A dynamic kernel principal component model under normal state was established for UAV, then fault detection was performed by T2 and SPE statistics; When a fault was detected, a method called reconstruction-based contribution was used for fault isolation. The simulation results showed that the proposed method could achieve better fault diagnosis effect for typical faults of actuators and sensors than linear DPCA model. Besides, DKPCA could achieve high sensitivity for small faults of UAV.

Key words: fault diagnosis, DKPCA, UAV, flight control system, reconstruction-based contribution

中图分类号: 

  • TP206
[1] FAHLSTROM P G, GLEASON T J, 吴汉平, 等. 无人机系统导论[M]. 北京:电子工业出版社, 2003.
[2] VALAVANIS K P, VACHTSEVANOS G J. Handbook of unmanned aerial vehicles[M].[S.l.] : Springer Publishing Company, Incorporated, 2014.
[3] FREEMAN P, PANDITA R, SRIVASTAVA N, et al. Model-based and data-driven fault detection performance for a small UAV[J]. Mechatronics, IEEE/ASME Transactions on, 2013, 18(4):1300-1309.
[4] MARZAT J, PIET-LAHANIER H, DAMONGEOT F, et al. Model-based fault diagnosis for aerospace systems: a survey[J]. Proceedings of the Institution of Mechanical Engineers: Part G: Journal of Aerospace Engineering, 2012: 226(10):1329-1360.
[5] QI X, QI J T, THEILLIOL D, et al. A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles[J]. Journal of Intelligent & Robotic System, 2014, 73(1):535-555.
[6] QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2):220-234.
[7] GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562.
[8] 白志强. 飞行控制系统故障检测研究与仿真软件开发[D]. 西安:西北工业大学, 2006. BAI Zhiqiang. Fault detection research and simulation software development of flight control system[D]. Xian: Northwestern Polytechnical University, 2006.
[9] QIU Z, LIU H, XI Q, et al. UAV PCA fault detection and diagnosis techniques[J]. Computer Engineering and Applications, 2013, 49(4):262-266.
[10] HAGENBLAD A, GUSTAFSSON F, KLEIN I. A comparison of two methods for stochastic fault detection: the parity space approach and principal components analysis[J]. IFAC Proceedings Volumes, 2003, 36(16):1053-1058.
[11] FUJIMAKI R, YAIRI T, MACHIDA K. An approach to spacecraft anomaly detection problem using kernel feature space[C] // Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, USA:ACM, 2005: 401-410.
[12] CHOI S W, LEE I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA[J]. Chemical engineering science, 2004, 59(24):5897-5908.
[13] ALCALA C F, QIN S J. Reconstruction-based contribution for process monitoring with kernel principal component analysis[C] // Proceedings of the 2010 American Control Conference. Baltimore, USA: ACC, 2010: 7022-7027.
[14] LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1):223-234.
[15] JAFFEL I, TAUOALI O, HARKAT M F, et al. Moving window KPCA with reduced complexity for nonlinear dynamic process monitoring[J]. ISA transactions, 2016, 64:184-192.
[16] JIA M, CHU F, WANG F, et al. On-line batch process monitoring using batch dynamic kernel principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 101(2):110-122.
[17] GAO Q, CHANG Y, XIAO Z, et al. Monitoring of distillation column based on indiscernibility dynamic kernel PCA[J]. Mathematical Problems in Engineering, 2016, 2016(4):1-11.
[18] KU W, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and intelligent laboratory systems, 1995, 30(1):179-196.
[19] SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural computation, 1998, 10(5):1299-1319.
[20] LI M H, LI G, ZHONG M H. A data driven fault detection and isolation scheme for UAV flight control system[C] // Control Conference(CCC), 2016 35th Chinese. Chengdu, China: IEEE Press, 2016: 6778-6783.
[1] 程鑫,张林,胡业发,陈强,梁典. 基于电流特性的主动磁轴承电磁线圈故障诊断[J]. 山东大学学报(工学版), 2018, 48(4): 94-101.
[2] 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80.
[3] 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21.
[4] 宋洋,钟麦英. 基于改进距离相似度的故障可分离性分析方法[J]. 山东大学学报(工学版), 2017, 47(5): 103-109.
[5] 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14.
[6] 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70.
[7] 陈杰,钟麦英,张利刚. 基于L2范数最小估计的无人机飞控系统故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 89-95.
[8] 邱路,叶银忠,姜春娣. 基于小波奇异熵和SOM神经网络的微电网系统故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 118-122.
[9] 赵煊,钟麦英,郭丁飞. 基于等价空间的无人机飞行控制系统故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 150-156.
[10] 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214.
[11] 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194.
[12] 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245.
[13] 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237.
[14] 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228.
[15] 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!