山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 215-222.doi: 10.6040/j.issn.1672-3961.0.2017.274
李明虎1,2,李钢2,钟麦英1*
LI Minghu1,2, LI Gang2, ZHONG Maiying1*
摘要: 飞行控制系统作为无人机(unmanned aerial vehicle, UAV)的核心子系统,对其进行故障诊断可以大大提高无人机的安全性和可靠性。在无人机数学模型未知或者不确定的情况下,数据驱动的故障诊断方法比基于模型的方法更实用。考虑无人机飞行控制系统是典型的非线性动态系统,采用一种非线性主元分析方法对其进行故障诊断。利用数据建立无人机飞行控制系统正常状态下的动态核主元模型,通过T2和SPE两种统计量实现故障检测;故障发生后,利用重构贡献图的方法进行故障分离。仿真试验证明,该方法能对典型的无人机执行器和传感器故障进行有效监测和诊断。与动态主元分析相比,动态核主元分析方法对微小故障更为敏感。
中图分类号:
[1] FAHLSTROM P G, GLEASON T J, 吴汉平, 等. 无人机系统导论[M]. 北京:电子工业出版社, 2003. [2] VALAVANIS K P, VACHTSEVANOS G J. Handbook of unmanned aerial vehicles[M].[S.l.] : Springer Publishing Company, Incorporated, 2014. [3] FREEMAN P, PANDITA R, SRIVASTAVA N, et al. Model-based and data-driven fault detection performance for a small UAV[J]. Mechatronics, IEEE/ASME Transactions on, 2013, 18(4):1300-1309. [4] MARZAT J, PIET-LAHANIER H, DAMONGEOT F, et al. Model-based fault diagnosis for aerospace systems: a survey[J]. Proceedings of the Institution of Mechanical Engineers: Part G: Journal of Aerospace Engineering, 2012: 226(10):1329-1360. [5] QI X, QI J T, THEILLIOL D, et al. A review on fault diagnosis and fault tolerant control methods for single-rotor aerial vehicles[J]. Journal of Intelligent & Robotic System, 2014, 73(1):535-555. [6] QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2):220-234. [7] GE Z, SONG Z, GAO F. Review of recent research on data-based process monitoring[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3543-3562. [8] 白志强. 飞行控制系统故障检测研究与仿真软件开发[D]. 西安:西北工业大学, 2006. BAI Zhiqiang. Fault detection research and simulation software development of flight control system[D]. Xian: Northwestern Polytechnical University, 2006. [9] QIU Z, LIU H, XI Q, et al. UAV PCA fault detection and diagnosis techniques[J]. Computer Engineering and Applications, 2013, 49(4):262-266. [10] HAGENBLAD A, GUSTAFSSON F, KLEIN I. A comparison of two methods for stochastic fault detection: the parity space approach and principal components analysis[J]. IFAC Proceedings Volumes, 2003, 36(16):1053-1058. [11] FUJIMAKI R, YAIRI T, MACHIDA K. An approach to spacecraft anomaly detection problem using kernel feature space[C] // Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, USA:ACM, 2005: 401-410. [12] CHOI S W, LEE I B. Nonlinear dynamic process monitoring based on dynamic kernel PCA[J]. Chemical engineering science, 2004, 59(24):5897-5908. [13] ALCALA C F, QIN S J. Reconstruction-based contribution for process monitoring with kernel principal component analysis[C] // Proceedings of the 2010 American Control Conference. Baltimore, USA: ACC, 2010: 7022-7027. [14] LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis[J]. Chemical Engineering Science, 2004, 59(1):223-234. [15] JAFFEL I, TAUOALI O, HARKAT M F, et al. Moving window KPCA with reduced complexity for nonlinear dynamic process monitoring[J]. ISA transactions, 2016, 64:184-192. [16] JIA M, CHU F, WANG F, et al. On-line batch process monitoring using batch dynamic kernel principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 101(2):110-122. [17] GAO Q, CHANG Y, XIAO Z, et al. Monitoring of distillation column based on indiscernibility dynamic kernel PCA[J]. Mathematical Problems in Engineering, 2016, 2016(4):1-11. [18] KU W, STORER R H, GEORGAKIS C. Disturbance detection and isolation by dynamic principal component analysis[J]. Chemometrics and intelligent laboratory systems, 1995, 30(1):179-196. [19] SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural computation, 1998, 10(5):1299-1319. [20] LI M H, LI G, ZHONG M H. A data driven fault detection and isolation scheme for UAV flight control system[C] // Control Conference(CCC), 2016 35th Chinese. Chengdu, China: IEEE Press, 2016: 6778-6783. |
[1] | 程鑫,张林,胡业发,陈强,梁典. 基于电流特性的主动磁轴承电磁线圈故障诊断[J]. 山东大学学报(工学版), 2018, 48(4): 94-101. |
[2] | 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80. |
[3] | 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21. |
[4] | 宋洋,钟麦英. 基于改进距离相似度的故障可分离性分析方法[J]. 山东大学学报(工学版), 2017, 47(5): 103-109. |
[5] | 李炜,王可宏,曹慧超. 基于新型ESF的一类非线性系统故障滤波方法[J]. 山东大学学报(工学版), 2017, 47(5): 7-14. |
[6] | 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70. |
[7] | 陈杰,钟麦英,张利刚. 基于L2范数最小估计的无人机飞控系统故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 89-95. |
[8] | 邱路,叶银忠,姜春娣. 基于小波奇异熵和SOM神经网络的微电网系统故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 118-122. |
[9] | 赵煊,钟麦英,郭丁飞. 基于等价空间的无人机飞行控制系统故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 150-156. |
[10] | 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214. |
[11] | 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194. |
[12] | 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245. |
[13] | 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237. |
[14] | 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228. |
[15] | 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270. |
|