您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 136-142.doi: 10.6040/j.issn.1672-3961.0.2017.212

• • 上一篇    下一篇

基于两阶段TKF的测量死区下离散时间系统的故障估计

黄洁,何潇*   

  1. 清华大学自动化系, 北京 100084
  • 收稿日期:2017-02-10 出版日期:2017-10-20 发布日期:2017-02-10
  • 通讯作者: 何潇(1982— ),男,河北保定人,副教授,博士生导师,博士,主要研究方向为网络化系统的鲁棒滤波,故障诊断与容错控制;高速列车信息控制系统的故障诊断.E-mail:hexiao@tsinghua.edu.cn E-mail:huang-j15@mails.tsinghua.edu.cn
  • 作者简介:黄洁(1993— ),女,福建莆田人,硕士研究生,主要研究方向为网络化系统的故障诊断.E-mail:huang-j15@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61473163,61522309,61490701)

Fault estimation for discrete-time systems with output dead-zone using two-stage Tobit kalman filter

HUANG Jie, HE Xiao*   

  1. Department of Automation, Tsinghua University, Beijing 100084, China
  • Received:2017-02-10 Online:2017-10-20 Published:2017-02-10

摘要: 针对出现测量死区的离散系统,提出一种基于两阶段TKF的故障估计方法。引入2个Bernoulli随机向量描述输出死区,并设计了增广状态Tobit卡尔曼滤波器(augmented state Tobit Kalman filter, ASTKF)。通过两步U-V变换方法对ASTKF的协方差矩阵解耦,从而获得两阶段Tobit卡尔曼滤波器(two-stage Tobit Kalman filter, TSTKF),并且利用TSTKF解决了系统故障估计问题。对所提出方法进行仿真,并与标准卡尔曼滤波器、间歇观测下的卡尔曼滤波器进行比较,说明了该方法的可行性和准确性。

关键词: 故障估计, Tobit回归模型, 递推估计, 数据删失, 测量死区, 两阶段Tobit卡尔曼滤波器

Abstract: The problem of estimating the fault for discrete-time systems with output dead-zone was addressed via two-stage Kalman filtering approach.Two Bernoulli random vectors were introduced to model the dead-zone effect. A two-stage Tobit Kalman filter(TSTKF)was derived to solve the filtering problem. The covariance matrices of the augmented state Tobit Kalman filter(ASTKF)was decoupled by using a two-stage U-V transformation technique to obtain the TSTKF. A numerical example was provided to illustrate the feasibility and accuracy of the proposed filter in the end which was compared with both standard Kalman filter and Kalman filter with intermittent observations.

Key words: fault estimation, data censoring, output dead-zone, two-stage Tobit Kalman filter, Tobit regression model, recursive estimation

中图分类号: 

  • TP206+.3
[1] LIU Y, WANG Z, HE X, et al. Filtering and fault detection for nonlinear systems with polynomial approximation[J].Automatica, 2015, 54(C): 348-359.
[2] TONG S, HUO B, LI Y. Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(1): 1-15.
[3] HE X, WANG Z, QIN L, et al. Active fault-tolerant control for an internet-based networked three tank system[J]. IEEE Transactions on Control Systems Technology, 2016, 24(6): 2150-2157.
[4] LAURENTYS C A, BOMFIM C H M, MENEZES B R, et al. Design of a pipeline leakage detection using expert system: a novel approach[J]. Applied Soft Computing, 2011, 11(1): 1057-1066.
[5] 郭天序,陈茂银,周东华. 非高斯过程与微小故障的故障检测方法[J]. 上海交通大学学报, 2015,49(6):775-785. GUO Tianxu, CHEN Maoyin, ZHOU Donghua. A fault detection method of non-Gaussian processes and small shift[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6):775-785.
[6] 纪洪泉, 何潇, 周东华. 基于多元统计分析的故障检测方法[J]. 上海交通大学学报, 2015,49(6):842-848. JI Hongquan, HE Xiao, ZHOU Donghua. Fault detection techniques based on multivariate statistical analysis[J]. Journal of Shanghai Jiao Tong University, 2015, 49(6):842-848.
[7] LIU J. Shannon wavelet spectrum analysis on truncated vibration signals for machine incipient fault detection[J]. Measurement Science and Technology, 2012, 23(5): 279-282.
[8] HE X, WANG Z, LIU Y, et al. Least-square fault detection and diagnosis for networked sensing systems using a direct state estimation approach[J]. IEEE Transactions on Industrial Informatics, 2013, 9(3): 1670-1679.
[9] LOPEZ-ESTRADA F R, PONSART J C, THEILLIOL D, et al. Robust sensor fault estimation for descriptor-LPV systems with unmeasurable gain scheduling functions: application to an anaerobic bioreactor[J]. International Journal of Applied Mathematics and Computer Science, 2015, 25(2): 233-244.
[10] WANG Z, RODRIGUES M, THEILLIOL D, et al. Sensor fault estimation filter design for discrete-time linear time-varying systems[J]. Acta Automatica Sinica, 2014, 40(10): 2356-2369.
[11] FRIEDLAND B. Treatment of bias in recursive filtering[J]. IEEE Transactions on Automatic Control, 1969, 14(4): 359-367.
[12] ALOUANI A T, XIA P, RICE T R, et al. On the optimality of two-stage state estimation in the presence of random bias[J]. IEEE Transactions on Automatic Control, 1993, 38(8): 1279-1282.
[13] HSIEH C S, CHEN F C. Optimal solution of the two-stage Kalman estimator[J]. IEEE Transactions on Automatic Control, 1999, 44(1): 194-199.
[14] BEN HMIDA F, KHEMIRI K, RAGOT J, et al. Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs[J]. Journal of the Franklin Institute-Engineering and Applied Mathematics, 2012, 349(7): 2369-2388.
[15] LEWIS F L, TIM W K, WANG L Z, et al. Deadzone compensation in motion control systems using adaptive fuzzy logic control[J]. IEEE Transactions on Control Systems Technology, 1999, 7(6): 731-742.
[16] SELMIC R R, LEWIS F L. Deadzone compensation in motion control systems using neural networks[J]. IEEE Transactions on Automatic Control, 2000, 45(4): 602-613.
[17] CHEN M, TAO G. Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone[J]. IEEE Transactions on Cybernetics, 2016, 46(8): 1851-1862.
[18] CHEN M, JIANG B, WILLIAM W. Fault-tolerant control for a class of non-linear systems with dead-zone[J]. International Journal of Systems Science, 2016, 47(7): 1689-1699.
[19] HUANG J, HE X. Detection of intermittent fault for discrete-time systems with output dead-zone: a variant Tobit Kalman filtering approach[J]. Journal of Control Science and Engineering, 2017(2017): 1-9.
[20] ALLIK B, MILLER C, PIOVOSO M J, et al. The Tobit Kalman filter: an estimator for censored measurements[J]. IEEE Transactions on Control Systems Technology, 2016, 24(1): 365-371.
[21] SINOPOLI B, SCHENATO L, FRANCESCHETTI M, et al. Kalman filtering with intermittent observations[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1453-1464.
[1] 李洪阳,何潇. 基于SCKF方法的非线性随机动态系统故障诊断方法[J]. 山东大学学报(工学版), 2017, 47(5): 130-135.
[2] 武炎明,王瑞云,王占山. 基于中间变量观测器的多智能体故障检测[J]. 山东大学学报(工学版), 2017, 47(5): 96-102.
[3] 赵晔,何潇,周东华. 带有不准确测量噪声的最小二乘故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 254-262.
[4] 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270.
[5] 袁帅1, 刘新芝1, 2*. 切换系统故障估计方法在三水箱系统中的应用[J]. 山东大学学报(工学版), 2011, 41(3): 52-58.
[6] 刘佃瑞,赵辉宏,钟麦英 . 一类线性离散时变系统的H∞故障估计[J]. 山东大学学报(工学版), 2008, 38(4): 11-16 .
[7] 刘帅,钟麦英 . 线性离散时变系统的H故障估计[J]. 山东大学学报(工学版), 2007, 37(3): 36-40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!