山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (5): 143-149.doi: 10.6040/j.issn.1672-3961.0.2017.172
庞人铭1,王波1,叶昊1*,张海峰2,李明亮2
PANG Renming1, WANG Bo1, YE Hao1*, ZHANG Haifeng2, LI Mingliang2
摘要: 将主元分析(principal component analysis, PCA)模型相似度(以下简称PCA相似度)和谱聚类(spectral clustering)算法相结合,并用于基于高炉历史数据挖掘的炉况工作点变化的分析。利用PCA相似度与距离相似度的加权来衡量滑窗数据集之间的相似度,进一步将数据集的聚类问题转化为图的最优划分问题,通过谱聚类得到聚类结果。该方法降低了高炉工作点漂移的影响,能够有效稳定的实现高炉炉况工作点的聚类。基于现场历史数据的离线测试表明:与已有的基于PCA相似度和k-means聚类的算法对比,本研究可以更加有效区分炉况工作点的跳变。
中图分类号:
[1] HAN J, KAMBER M. Data mining: concepts and techniques(the Morgan Kaufmann series in data management systems)[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(3):1435-1440. [2] YU F X, SUO Y N, ZHANG X, et al. Data mining in blast furnace smelting parameter[J]. Applied Mechanics and Materials, 2013, 303-306: 1093-1096. [3] 明菲. 关联规则挖掘在高炉炉况预测中的应用研究[D]. 重庆:重庆大学, 2009. MING Fei. Research on application of association rule mining to blast furnace situation prediction[D]. Chongqing: Chongqing University, 2009. [4] ZHANG T, YE H, WANG W, et al. Fault diagnosis for blast furnace ironmaking process based on two-stage principal component analysis[J]. ISIJ International, 2014, 54(10): 2334-2341. [5] ZHOU B, YE H, ZHANG H, et al. Process monitoring of iron-making process in a blast furnace with PCA-based methods[J]. Control Engineering Practice, 2016, 47: 1-14. [6] 苏鑫,吴迎亚,裴华健,等. 大数据技术在过程工业中的应用研究进展[J]. 化工进展, 2016, 35(6):1652-1659. SU Xin, WU Yingya, PEI Huajian, et al. Recent development of the application of big data technology in process industries[J]. Chemical Industry and Engineering Progress, 2016, 35(6):1652-1659. [7] ZULLO L. Validation and verification of continuous plants operating modes using multivariate statistical methods[J]. Computers & Chemical Engineering, 1996, 20(12): S683-S688. [8] NATARAJAN S, SRINIVASAN R. Multi-model based process condition monitoring of offshore oil and gas production process[J]. Chemical Engineering Research and Design, 2010, 88(5-6): 572-591. [9] KRZANOWSKI W J. Between-groups comparison of principal components[J]. Journal of the American Statistical Association, 1979, 74(367): 703-707. [10] YAO Y, GAO F. Phase and transition based batch process modeling and online monitoring[J]. Journal of Process Control, 2009, 19(5): 816-826. [11] JOHANNESMEYER M C. Abnormal situation analysis using pattern recognition techniques and historical data[D]. Santa Barbara:University of California, 1999. [12] 李秀玉, 张成, 逄玉俊. 基于PCA的相似度方法在半导体产品分类中的应用[J]. 沈阳化工大学学报, 2013, 27(1):58-62. LI Xiuyu, ZHANG Cheng, PANG Yujun. Application of PCA similarity factor in classification of semiconductor products[J]. Journal of Shenyang University of Chemical Technology, 2013, 27(1):58-62. [13] SINGHAL A, SEBORG D E. Pattern matching in multivariate time series databases using a moving-window approach[J]. Industrial & Engineering Chemistry Research, 2002, 41(16): 3822-3838. [14] 蔡晓妍, 戴冠中, 杨黎斌. 谱聚类算法综述[J]. 计算机科学, 2008, 35(7):14-18. CAI Xiaoyan, DAI Guanzhong, YANG Libin. Survey on spectral clustering algorithms[J]. Computer Science, 2008, 35(7):14-18. [15] LUXBURG U. A tutorial on spectral clustering[J].Statistics and Computing, 2007,17(4): 395-416. [16] NG A Y, JORDAN M I, WEISS Y. On spectral clustering: analysis and an algorithm[C] //Neural Information Processing Systems: Natural and Synthetic. Vancouver, Canada:MIT Press, 2001, 14(2): 849-856. [17] 张亚平. 谱聚类算法及其应用研究[D].太原:中北大学, 2014. ZHANG Yaping. Spectral clustering algorithm and its application research[D]. Taiyuan:North University of China, 2014. [18] SINGHAL A, SEBORG D E. Clustering multivariate time-series data[J]. Journal of Chemometrics, 2005, 19(8): 427-438. [19] 窦克勤, 叶昊, 张海峰,等. 基于主元分析的高炉异常炉况检测[J]. 上海交通大学学报, 2015, 49(12):1862-1867. DOU Keqin, YE Hao, ZHANG Haifeng, et al. Fault detection for ironmaking process of blast furnace based on PCA[J]. Journal of Shanghai Jiaotong University, 2015, 49(12):1862-1867. |
[1] | 樊淑炎, 丁世飞. 基于多尺度的改进Graph cut算法[J]. 山东大学学报(工学版), 2016, 46(1): 28-33. |
[2] | 周哲, 商琳. 一种基于动态词典和三支决策的情感分析方法[J]. 山东大学学报(工学版), 2015, 45(1): 19-23. |
[3] | 王兴良,王立宏*,李海军. 谱聚类中特征向量的Bagging选取方法[J]. 山东大学学报(工学版), 2013, 43(2): 35-41. |
[4] | 朱全银1,严云洋1,周培1,谷天峰2. 一种线性插补与自适应滑动窗口价格预测模型[J]. 山东大学学报(工学版), 2012, 42(5): 53-58. |
[5] | 琚春华1,2,陈之奇1*. 一种挖掘概念漂移数据流的模糊积分集成分类方法[J]. 山东大学学报(工学版), 2011, 41(4): 44-48. |
[6] | 宋威,刘文博,李晋宏. 基于动态裁剪频繁模式树的频繁项集并发挖掘算法[J]. 山东大学学报(工学版), 2011, 41(4): 49-55. |
[7] | 王爱国,李廉*,杨静,陈桂林. 一种基于Bayesian网络的网页推荐算法[J]. 山东大学学报(工学版), 2011, 41(4): 137-142. |
[8] | 张新猛,蒋盛益. 一种基于相似度概率的不确定分类数据聚类算法[J]. 山东大学学报(工学版), 2011, 41(3): 12-16. |
[9] | 孙静宇,余雪丽,陈俊杰, 李鲜花. 采样特异性因子及异常检测[J]. 山东大学学报(工学版), 2010, 40(5): 56-59. |
[10] | 陈光 崔玲 高云凯. 大客车车身结构多工况综合优化分析[J]. 山东大学学报(工学版), 2009, 39(6): 88-91. |
[11] | 董乃鹏 赵合计 SCHOMMER Christoph. 作者写作特征提取引擎[J]. 山东大学学报(工学版), 2009, 39(5): 27-31. |
[12] | 卜德云 张道强. 自适应谱聚类算法研究[J]. 山东大学学报(工学版), 2009, 39(5): 22-26. |
[13] | 孙宇清,赵锐,姚青,史斌,刘佳 . 一种基于网格的障碍约束下空间聚类算法[J]. 山东大学学报(工学版), 2006, 36(3): 86-90 . |
|