您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (3): 151-158.doi: 10.6040/j.issn.1672-3961.0.2017.129

• • 上一篇    

基于Markov链的锅炉热负荷预测方法

路昌海   

  1. 胜利石油管理局热电联供中心, 山东 东营 257000
  • 收稿日期:2017-03-23 出版日期:2017-06-20 发布日期:2017-03-23
  • 作者简介:路昌海(1969— ),男,山东邹平人,高级工程师,硕士,主要研究方向为供热运行与管理.E-mail:luchanghai.slyt@sinopec.com

Forecasting method of boiler heat load based on Markov chain

LU Changhai   

  1. Cogeneration Center of Shengli Petroleum Administration Bureau, Dongying 257000, Shandong, China
  • Received:2017-03-23 Online:2017-06-20 Published:2017-03-23

摘要: 基于Markov链的锅炉热负荷预测方法,提出多参数预测调控模型。根据室外温度,对日均供水温度进行Markov链预测,结合日均燃煤量、鼓风机频率、引风机频率等参数的状态空间,进行复合概率预测。具体应用时,将调控量的大概率最低值作为起点,根据监测量变化,优化调节。试验结果表明:在居民室温达标范围内,日均煤耗量较模型应用前降低约8%;日均供水温度降低约7%,燃煤投放准确率及调控精确率有效提升实现了锅炉热负荷的精细调控。

关键词: 燃煤锅炉, 预测, 精细调控, 热负荷, 马尔可夫链

Abstract: The multi-parameter forecasting control model was proposed based on Markov chain of the forecasting method of coal-fired boiler heat load. In accordance with outdoor temperature, the average feed-water temperature was predicted. Then the compound probability was forecast with reference to the average daily fuel consumption, air-blower frequency and induced draft fan frequency. Conversely, the range of high probability was taken full advantage of to optimize the above mentioned three parameters.The experiment results showed that when the room temperature met the heating standards, the average daily fuel consumption was reduced by about 8 percent and the average daily feed-water about 7 percent after the forecasting control model was carried out,the accuracy of coal burning and operation control promoted effectively.This method provided a new way of the fine control of boil heat load.

Key words: forecasting, coal-fired boiler, markov chain, heat load, fine control

中图分类号: 

  • TK11
[1] 冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算[M]. 北京:科学出版社,2003:8-25.
[2] 姚庆文.基于模糊控制的锅炉温度调控策略[J].计算机仿真,2011,28(12):118-119. YAO Qingwen. Fuzzy regulation of boiler temperature control trategy[J].Computer Simulation, 2011, 28(12):118-119.
[3] 刘云龙.热水锅炉燃烧系统建模与优化控制研究[D].大连:大连理工大学,2013:7-25. LIU Yunlong. Mathermatical modeling and optimization control research of hot water boiler combustion system[D].Dalian: Dalian University of Technology, 2013:7-25.
[4] 陈忠海,侯喜英.集中供热系统中锅炉节能运行调控研究[J]. 河北建筑工程学院学报,2016,39(3):95-98. CHEN Zhonghai, HOU Xiying. Research on energy-saving opteration regulation of boiler in central heating system[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2016, 39(3):95-98.
[5] 潘云. 基于智能算法的火电厂锅炉燃烧优化技术的研究[D].保定:华北电力大学,2015:5-25. PAN Yun. Research on the optimization technology of boiler combustion in power plant base on intelligent algorithm[D]. Baoding: North China Electric Power University Management, 2015:5-25.
[6] 辛少杰. 燃煤工业锅炉热负荷预测的研究[D]. 上海:上海交通大学, 2011:9-20. XIN Shaojie. Study on thermal load forecasting of coal-fired industrial boiler[D].Shanghai: Shanghai Jiao Tong University, 2011:9-20.
[7] 闫向军. 基于Markov链的燃煤锅炉煤耗量预测方法研究[J].计算机应用与软件,2013,30(12):269-271. YAN Xiangjun. Research on markov chain based coal-fired boiler consumption prediction method[J]. Computer Applications and Software, 2013, 30(12):269-271.
[8] 李浚泉. 智能控制发展过程综述[J].工业控制计算机,1999(3):30-35. LI Junquan. Overview of intelligent control development process[J].Industrial Control Computer, 1999(3):30-35.
[9] 夏乐天,朱永忠.工程随机过程[M]. 南京: 河海大学出版社, 2000:10-37.
[10] XIE Fengyun, WU Bo, HU Youmin, et al. A generalized Markov chain model based on generalized interval probability[J]. Science China(Technological Sciences), 2013: 2133-2135.
[11] WTSAI Christina, WU Naikuang, HUANG Chihsiang. A multiple-state discrete-time Markov chain model for estimating suspended sediment concentrations in open channel flow[J]. Applied Mathematical Modelling, 2016(12):10002-10019.
[12] ZHOU Dengji, YU Ziqiang, ZHANG Huisheng, et al. A novel grey prognostic model based on markov process and grey incidence analysis for energy conversion equipment degradation[J]. Energy, 2016:420-429.
[13] 莫协强.基于随机过程的设备性能可靠性预测[J].长春教育学院学报, 2013, 29(10):52-53. MO Xieqiang. Reliability prediction of quipment capability based on Random process[J].Journal of Changchun Education Institute, 2013, 29(10):52-53.
[14] 骆振福,陈尚龙,赵跃民,等.基于马尔可夫理论的气固分选流化床密度的预测[J].煤炭学报,2011, 36(1):105-109. LUO Zhenfu, CHEN Shanglong, ZHAO Yuemin, et al. Density prediction of gas—solid fluidized bed for separation base on markov theory[J]. Journal of China Coal Society, 2011, 36(1):105-109.
[15] 刘殿海,杨勇平,杨昆,等. 基于马尔科夫链的能源结构与污染物排放预测模型及其应用[J].中国电力,2006,39(3):8-13. LIU Dianhai, YANG Yongping, YANG Yong, et al. Forecasting model and its application of energy structure and pollutant emission based on markov chain[J]. Electric Power, 2006, 39(3):8-13.
[16] 夏乐天,彭志行,沈永梅.加权马尔可夫链在农作物年景预测中的应用[J].数学的实践与认识, 2005,35(12):30-35. XIA Letian, PENG Zhixing, SHEN Yongmei. The application of weighed markov chain to the prediction of crops years harvest[J]. Mathematics in Practice and Theory, 2005, 35(12):30-35.
[17] SAIDUR R, ABDELAZIZ E A, DEMIRBAS A. A review on biomass as a fuel for boilers[J].Renewable and Sustainable Energy Reviews, 2011, 15(5):2262-2289.
[18] 岳遥,李天宏.基于模糊集理论的马尔可夫模型在水质定量预测中的应用[J] 应用基础与工程科学学报,2011,19(2):231-242. YUE Yao, LI Tianhong. The application of Fuzzy-set-theory based markov model in the quantitative prediction of water quality[J].Journal of Basic Science and Engineering, 2011, 19(2):231-242.
[19] DENNIS P. Detection of trends in water quality data from records with dependent observations[J]. Water Resourses Research, 1976, 12(5):1037-1046.
[20] 刘耀林,刘艳芳,张玉梅.基于灰色马尔柯夫链预测模型的耕地需求量预测研究[J]. 武汉大学学报·信息科学版, 2004,29(7):575-579. LIU Yaolin, LIU Yanfang, ZHANG Yumei. Prediction of gross arable land based on grey-markov model[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7):575-579.
[1] 刘哲,宋锐,邹涛. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1): 42-49.
[2] 谢国辉,樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47(6): 83-88.
[3] 韩学山,王俊雄,孙东磊,李文博,张心怡,韦志清. 计及空间关联冗余的节点负荷预测方法[J]. 山东大学学报(工学版), 2017, 47(6): 7-12.
[4] 李笋,王超,张桂林,徐志根,程涛,王义元,王瑞琪. 基于支持向量回归的短期负荷预测[J]. 山东大学学报(工学版), 2017, 47(6): 52-56.
[5] 车长明,张华栋,李建祥,袁弘,刘海波. 需求侧规模化电动汽车的充电负荷优化调控策略[J]. 山东大学学报(工学版), 2017, 47(6): 108-114.
[6] 周志杰,赵福均,胡昌华,王力,冯志超,刘涛源. 基于证据推理的航天继电器故障预测方法[J]. 山东大学学报(工学版), 2017, 47(5): 22-29.
[7] 周福娜,高育林,王佳瑜,文成林. 基于深度学习的缓变故障早期诊断及寿命预测[J]. 山东大学学报(工学版), 2017, 47(5): 30-37.
[8] 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40-47.
[9] 包建业,王静. 基于离散裂隙网络模型的隧道涌水量预测[J]. 山东大学学报(工学版), 2016, 46(6): 127-134.
[10] 王志强,文益民,李芳. 基于多方面评分的景点协同推荐算法[J]. 山东大学学报(工学版), 2016, 46(6): 54-61.
[11] 刘斌,李术才,李建斌,王玉杰,张建清,聂利超,王雪亮. TBM掘进前方不良地质与岩体参数的综合获取方法[J]. 山东大学学报(工学版), 2016, 46(6): 105-112.
[12] 于松青, 侯承昊, 孙英涛. 基于系统动力学的山东省电力需求预测[J]. 山东大学学报(工学版), 2015, 45(6): 91-98.
[13] 熊冰妍, 王国胤, 邓维斌. 分级式代价敏感决策树及其在手机换机预测中的应用[J]. 山东大学学报(工学版), 2015, 45(5): 36-42.
[14] 郭志波, 董健, 庞成. 多技术融合的Mean-Shift目标跟踪算法[J]. 山东大学学报(工学版), 2015, 45(2): 10-16.
[15] 郑毅, 朱成璋. 基于深度信念网络的PM2.5预测[J]. 山东大学学报(工学版), 2014, 44(6): 19-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!