您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 127-134.doi: 10.6040/j.issn.1672-3961.0.2016.144

• • 上一篇    

基于离散裂隙网络模型的隧道涌水量预测

包建业1,王静2*   

  1. 1. 内蒙古建筑职业技术学院建筑工程学院, 内蒙古 呼和浩特 010070;2. 内蒙古建筑职业技术学院市政与路桥工程学院, 内蒙古 呼和浩特 010070
  • 收稿日期:2016-04-29 出版日期:2016-12-20 发布日期:2016-04-29
  • 通讯作者: 王静(1984— ),女,内蒙古呼和浩特人,讲师,本科,主要研究方向为道路桥梁工程. E-mail:hailan567@163.com E-mail:2897577391@qq.com
  • 作者简介:包建业(1982— ),男,内蒙古兴和人,讲师,本科,主要研究方向为道路桥梁工程. E-mail:2897577391@qq.com

Prediction of flow rate during tunnel excavation based on discrete fracture network models

BAO Jianye1, WANG Jing2*   

  1. 1. College of Civil Engineering, Inner Mongola Technical College of Construction, Hohhot 010070, Inner Mongola, China;
    2. Faculty of Civil and Transportation Engineering, Inner Mongola Techmical College of Construction, Hohhot 010070, Inner Mongola, China
  • Received:2016-04-29 Online:2016-12-20 Published:2016-04-29

摘要: 通过建立不同赋存水体深度、不同隧道直径和不同开挖距离等共96个复杂裂隙网络数值模型,计算通过隧道掌子面的涌水量,拟合预测隧道涌水量的多参数回归方程。结果表明,流体的主要流动路径由连接入口边界和出口边界的连通裂隙组成。组成主要流动路径的裂隙内的流速最大;离连接入口边界和出口边界的连通裂隙越远,裂隙内的流速越小;水体较浅时,涌水量与开挖距离具有幂函数关系;水体较深时,涌水量与开挖距离具有线性关系;对隧道涌水量影响程度由高到低的影响因素依次为隧道直径、水体深度、开挖距离。隧道涌水量的预测结果和数值计算结果能很好吻合,验证了该回归方程具有普适性,可对节理发育岩体内隧道涌水量进行动态预测。

关键词: 裂隙网络, 回归方程, 动态预测, 隧道, 涌水量

Abstract: 96 complex fracture networks was modelled that had different water depths, tunnel diameters, and excavation distances, a multi-variable regression was proposed function to predict the flow rate at tunnel face by calculating flow rate of each case. The results showed that the main flow paths were formed by connected fractures between the inlet and outlet boundaries. The fractures which formed fracture network had the maximum flow rate, and the flow rate was smaller for fractures far from the flow paths. With the increment of excavation distance, the flow rate at tunnel face increased following power law functions when water depth was small and linear functions when water depth was large. Tunnel diameter was the most sensitive parameter to influence the flow rate at tunnel face, followed by water depth and excavation distance. The predicted and calculated results were tallied well, which indicated that the proposed multi-variable regression function was suitable for predicting flow rate at tunnel face. The obtained conclusions are helpful for the engineers to predict the flow rate at tunnel face during construction.

Key words: flow rate, fracture network, regression function, prediction, tunnel

中图分类号: 

  • U452
[1] MIN K B, JING L. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(6):795-816.
[2] MIN K B, RUTQVIST J, TSANG C F, et al. Stress-dependent permeability of fractured rock masses: a numerical study[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(7):1191-1210.
[3] 李方东. 基于涌水量预估和动态监测的公路隧道长距离反坡排水施工技术及其应用[J]. 隧道建设, 2015, 35(12):1321-1330. LI Fangdong. Reverse slope drainage technology based on water inflow prediction and dynamic monitoring and its application in long tunnel[J]. Tunnel Construction, 2015, 35(12):1321-1330.
[4] 胡子平. 宜万铁路齐岳山隧道选线, 施工与管理[J]. 铁道标准设计, 2010(8):12-19. HU Ziping. Route selection, construction and management of Qiyueshan tunnel in Yiwan railway[J]. Railway Standard Desigh, 2010(8):12-19.
[5] 左玉杰. 反坡富水岩溶隧道抽排水系统的设置和应用[J]. 铁道建筑技术, 2007(4):26-29. ZUO Yujie. A rangement and application of the tunnel drainage system in the reverse-slope stratum with a bundant water[J]. Railway Construction Technology, 2007(4):26-29.
[6] 王晓明, 曹正波. 基于水均衡方法的隧道涌水量概率预测[J]. 交通标准化, 2014, 42(23):112-114. WANG Xiaoming, CAO Zhengbo. Probabilistic prediction of water inflow into a tunnel using water balance method[J]. Transport Standardization, 2014, 42(23):112-114.
[7] 喻成云. 基于统计分析的西南岩溶区隧道涌水量预测探析[D]. 成都:成都理工大学, 2013. YU Chengyun. Based on statistical analysis of southwest China karst tunnel inflow forecast analysis[D]. Chengdu: Chengdu University of Technology, 2013.
[8] 刘牛生. 特长隧道涌水综合反坡排水施工技术[J]. 建筑, 2010(12):44. LIU Niusheng. Construction techniques for reverse slope drainage of a long tunnel[J]. Construction and Architecture, 2010(12):44.
[9] CHELIDZE T, GUEGUEN Y. Evidence of fractal fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1990, 27(3):223-225.
[10] WATANABE K, TAKAHASHI H. Fractal geometry characterization of geothermal reservoir fracture networks[J]. Journal of Geophysical Research: Solid Earth, 1995, 100:521-528.
[11] WATANABE K, TAKAHASHI H. Parametric study of the energy extraction from hot dry rock based on fractal fracture network model[J]. Geothermics, 1995, 24(2):223-236.
[12] KOLYUKHIN D, TORABI A. Power-law testing for fault attributes distributions[J]. Pure and Applied Geophysics, 2013, 170(12):2173-2183.
[13] DMITRIY K, ANITA T. Statistical analysis of the relationships between faults attributes[J]. Journal of Geophysical Research: Solid Earth(1978—2012), 2012, 117(B5):81-88.
[14] TORABI A, BERG S S. Scaling of fault attributes: a review[J]. Marine and Petroleum Geology, 2011, 28(8):1444-1460.
[15] CHILDS C, WALSH J J, WATTERSON J. A method for estimation of the density of fault displacements below the limits of seismic resolution in reservoir formations[J]. North Sea Oil and Gas Reservoirs—II, 1990:309-318.
[16] SORNETTE A, DAVY P, SORNETTE D. Fault growth in brittle-ductile experiments and the mechanics of continental collisions[J]. Journal of Geophysical Research: Solid Earth(1978—2012), 1993, 98(B7):12111-12139.
[17] BOUR O, DAVY P. Connectivity of random fault networks following a power law fault length distribution[J]. Water Resources Research, 1997, 33(7):1567-1583.
[18] REEVES D M, PARASHAR R, POHLL G, et al. The use of discrete fracture network simulations in the design of horizontal hillslope drainage networks in fractured rock[J]. Engineering Geology, 2013, 163:132-143.
[19] PARASHAR R, REEVES D M. On iterative techniques for computing flow in large two-dimensional discrete fracture networks[J]. Journal of Computational and Applied Mathematics, 2012, 236(18):4712-4724.
[20] BAGHBANAN A, JING L. Hydraulic properties of fracture rock masses with correlated fracture length and aperture[J]. International Journal Rock Mechanics Mining Sciences, 2007, 44(5):704-719.
[21] 顾博渊, 史宝童, 黄嫚. 山岭隧道涌水量预测方法分类及相关因素分析[J]. 隧道建设, 2015, 35(12):1258-1263. GU Boyuan, SHI Baotong, HUANG Man. Classification of water inflow prediction methods for mountain-crossing tunnels and analysis on related factors[J]. Tunnel Construction, 2015, 35(12):1258-1263.
[22] 田海涛, 董益华, 王延辉. 隧道涌水量预测的研究[J]. 水利与建筑工程学报, 2007, 5(3):75-77. TIAN Haitao, DONG Yihua, WANG Yanhui. Study on forecasting for water-gushed yield of tunnel[J]. Journal of Water Resources and Architectural Engineering, 2007, 5(3):75-77.
[23] 姜爱民, 杨辉, 张明. 确定性数学模型方法预测隧道涌水量研究[J]. 工程勘察, 2012, 40(6):37-41. JIANG Aimin, YANG Hui, ZHANG Ming. Study on deterministic mathematical model for predicting water gushing yield of tunnel[J]. Geotechnical Investigation and Surveying, 2012, 40(6):37-41.
[24] 陶玉敬, 彭金田, 陶炳勋. 隧道涌水量预测方法及其分析[J]. 四川建筑, 2007, 27(6):109-110. TAO Yujing, PENG Jintian, TAO Bingxun. Study and analysis on forecasting for water-gushed yield of tunnel[J]. Sichuan Architecture, 2007, 27(6):109-110.
[25] 郑黎明. 隧道涌水灾害预测的随机性数学模型方法[J]. 西南交通大学学报, 1998, 33(3):273-278. ZHENG Liming. A stochastic mathematic method for predicting gushing water from tunnel surrounding rockmasses[J]. Journal of Southwest Jiaotong University, 1998, 33(3):273-278.
[26] 赵继增. 青岛胶州湾海底隧道涌水断层全断面帷幕注浆技术研究[J]. 山东大学学报(工学版), 2009, 39(6):116-120. ZHAO Jizeng. Study of full-face curtain grouting on water-burst fault F4-4 subsea tunnel in Qingdao Jiaozhou bay[J]. Journal of Shandong University(Engineering Science), 2009, 39(6):116-120.
[27] 张庆松, 李术才, 韩宏伟, 等. 岩溶隧道施工风险评价与突水灾害防治技术研究[J]. 山东大学学报(工学版), 2009, 39(3):106-110. ZHANG Qingsong, LI Shucai, HAN Hongwei, et al. Study on risk evaluation and water inrush disaster preventing technology during construction of karst tunnels[J]. Journal of Shandong University(Engineering Science), 2009, 39(3):106-110.
[28] 薛翊国, 李术才, 张庆松, 等. 隧道信息化施工地质灾害预警预报技术研究[J]. 山东大学学报(工学版), 2008, 38(5):25-30. XUE Yiguo, LI Shucai, ZHANG Qingsong, et al. Prediction and early-warning technology of geological hazards in tunnel informational construction[J]. Journal of Shandong University(Engineering Science), 2008, 38(5):25-30.
[29] 邱道宏, 钟世航, 李术才, 等. 陆地声纳法在隧道不良地质超前预报中的应用[J]. 山东大学学报(工学版), 2009, 39(4):17-20. QIU Daohong, ZHONG Shihang, LI Shucai, et al. Application of the land sonar method in tunnel defective geological advanced prediction[J]. Journal of Shandong University(Engineering Science), 2009, 39(4):17-20.
[30] 马秀媛, 李逸凡, 张立, 等. 数值方法在矿井涌水量预测中的应用[J]. 山东大学学报(工学版), 2011, 41(5):86-91. MA Xiuyuan, LI Yifan, ZHANG Li, et al. Numerical methods in predicting mine discharge[J]. Journal of Shandong University(Engineering Science), 2011, 41(5):86-91.
[31] 刘斌, 李术才, 张庆松, 等. 隧道地质灾害预警体系中岩溶裂隙水综合预报技术研究[J]. 山东大学学报(工学版), 2009, 39(3):115-121. LIU Bin, LI Shucai, ZHANG Qingsong, et al. Study of the prediction of karst-fractured groundwater in prediction and early warning system of tunnel geologic hazards[J]. Journal of Shandong University(Engineering Science), 2009, 39(3):115-121.
[32] ENGLMAN R, GUR Y, JAEGER Z. Fluid flow through a crack network in rocks[J]. Journal of Applied Mechanics, 1983, 50(4a):707-711.
[33] ROBINSON P C. Connectivity of fracture systems-a percolation theory approach[J]. Journal of Physics A: Mathematical and General, 1983, 16(3):605.
[34] ROBINSON P C. Numerical calculations of critical densities for lines and planes[J]. Journal of Physics A: Mathematical and General, 1984, 17(14):2823.
[35] BALBERG I, ANDERSON C H, ALEXANDER S, et al. Excluded volume and its relation to the onset of percolation[J]. Physical Review B, 1984, 30(7):3933-3943.
[36] GUEGUEN Y, DIENES J. Transport properties of rocks from statistics and percolation[J]. Mathematical Geology, 1989, 21(1):1-13.
[37] SAHIMI M. Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing[J]. Reviews of Modern Physics, 1993, 65(4):1393.
[38] ANDRADE JR J S, OLIVEIRA E A, MOREIRA A A, et al. Fracturing the optimal paths[J]. Physical Review Letters, 2009, 103(22):225503.
[39] DAVY P. On the frequency-length distribution of the San Andreas fault system[J]. Journal of Geophysical Research, 1993, 98(B7):12141-12151.
[40] BOGDANOV I I, MOURZENKO V V, THOVERT J F, et al. Effective permeability of fractured porous media with power-law distribution of fracture sizes[J]. Physical Review E, 2007, 76(3):73-82.
[41] DVERSTORP B, ANDERSSON J. Application of the discrete fracture network concept with field data: possibilities of model calibration and validation[J]. Water Resources Research, 1989, 25(3):540-550.
[42] TSANG Y W, TSANG C F, HALE F V, et al. Tracer transport in a stochastic continuum model of fractured media[J]. Water Resources Research, 1996, 32(10):3077-3092.
[43] DE DREUZY J R, DAVY P, BOUR O. Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. permeability of networks based on lognormal distribution of apertures[J]. Water Resources Research, 2001, 37(8):2079-2095.
[44] DE DREUZY J R, DAVY P, BOUR O. Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. effective connectivity[J]. Water Resources Research, 2001, 37(8):2065-2078.
[1] 宋贵杰. 浅埋软岩段隧道进洞施工变形特征与失稳分析[J]. 山东大学学报(工学版), 2018, 48(2): 53-60.
[2] 刘纪峰,杨欢欢. 超近距双线隧道旁穿建筑群的信息化施工风险控制[J]. 山东大学学报(工学版), 2017, 47(3): 102-111.
[3] 周轮,李术才,许振浩,李利平,黄鑫,何树江,李国豪. 隧道综合超前地质预报技术及其工程应用[J]. 山东大学学报(工学版), 2017, 47(2): 55-62.
[4] 万利,王春河,王琦,李术才,邵行,江贝,孙会彬,秦乾. 超大断面隧道软弱围岩控制机制及应用[J]. 山东大学学报(工学版), 2017, 47(1): 59-67.
[5] 王者超,张振杰,李术才,毕丽平,方水鑫,钟克诚. 基于离散裂隙网络法的地下石油洞库洞室间水封性评价[J]. 山东大学学报(工学版), 2016, 46(2): 94-100.
[6] 潘光明,郑东柱. 隧道深部围岩薄弱区定域控制注浆技术及应用[J]. 山东大学学报(工学版), 2016, 46(1): 49-55.
[7] 高智珺, 崔新壮, 隋伟, 郭洪, 刘航, 李长义, 冯洪波. 大型失控车辆与隧道衬砌的动态相互作用与损伤分析[J]. 山东大学学报(工学版), 2014, 44(5): 49-57.
[8] 周前, 赵德刚. 水平旋喷桩在富水砂层浅埋暗挖隧道中的应用[J]. 山东大学学报(工学版), 2014, 44(4): 52-57.
[9] 周栾爱1,唐文左2,崔晓华3,随慧斌4*. 电力电缆运行安全非线性模糊综合评判模型[J]. 山东大学学报(工学版), 2013, 43(6): 83-88.
[10] 吕国仁1,隋斌2,王永进1,武建权3. 浅埋偏压隧道开挖数值模拟及稳定性研究[J]. 山东大学学报(工学版), 2013, 43(4): 68-73.
[11] 孙怀凤1,李术才1,李貅2,戚志鹏2,刘磊2,薛翊国1,苏茂鑫1,刘斌1,张文俊1. 核磁共振测深进行隧道超前地质预报的可行性[J]. 山东大学学报(工学版), 2013, 43(1): 92-97.
[12] 吕国仁1, 张寿龙2. 隧道浅埋偏压段超前预测与围岩稳定控制研究[J]. 山东大学学报(工学版), 2012, 42(5): 102-107.
[13] 李树忱1,徐钦健1,冯现大1,胡世权2,周强2. 膨胀性土质隧道围岩级别划分与支护对策研究[J]. 山东大学学报(工学版), 2012, 42(4): 79-85.
[14] 徐庆辉1,孙克国2*,朱峰2,许洪伟2. 基于污染物体积分数判识的长大隧道竖井位置优化研究[J]. 山东大学学报(工学版), 2012, 42(3): 87-92.
[15] 解东升1,2,石少帅3,陈士林4,李利平3,5,周宗青3,胡聪3. 高风险岩溶隧道突水突泥灾害前兆规律与应用研究[J]. 山东大学学报(工学版), 2012, 42(1): 81-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[2] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[3] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[4] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[5] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[6] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[7] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[8] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[9] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .
[10] 姚占勇,商庆森,赵之仲,贾朝霞 . 界面条件对半刚性沥青路面结构应力分布的影响[J]. 山东大学学报(工学版), 2007, 37(3): 93 -99 .