您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 29-36.doi: 10.6040/j.issn.1672-3961.2.2015.008

• • 上一篇    下一篇

一种局部协同过滤的排名推荐算法

黄丹,王志海,刘海洋   

  1. 北京交通大学计算机与信息技术学院, 北京 100044
  • 收稿日期:2015-05-16 出版日期:2016-10-20 发布日期:2015-05-16
  • 作者简介:黄丹(1990— ),女,江苏徐州人,硕士研究生,主要研究方向为数据挖掘和机器学习.E-mail:13120393@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61370130);北京市自然科学基金资助项目(4142042)

A local collaborative filtering algorithm based on ranking recommendation tasks

HUANG Dan, WANG Zhihai, LIU Haiyang   

  1. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
  • Received:2015-05-16 Online:2016-10-20 Published:2015-05-16

摘要: 基于矩阵分解模型、时间因素和排名模式,提出一种局部协同过滤的排名推荐算法,并放松用户对项目的评分矩阵是低秩的这一假设,假设用户对项目的评分矩阵是局部低秩的,即评分矩阵在某个用户项目序偶的近邻空间内是低秩的。修改信息检索中常用的评价指标平均倒数排名(mean reciprocal rank, MRR)函数,使其适合评分数据集合,然后对其进行平滑化操作和简化操作,最后直接优化这一评价指标。提出的算法易于并行化,可以在大型的真实数据集合上运行。试验结果表明该算法能提升推荐的性能。

关键词: 推荐系统, 协同过滤, 时间因素, 平均倒数排名, 矩阵分解

Abstract: Based on matrix factorization model, time factor and ranking problem, a collaborative filtering algorithm was proposed. The method relaxed the low-rank assumption of rating matrix and assumed that the rating matrix was locally low-rank,which meaned that the rating matrix was low-rank in the neighborhood of certain user-item combination. Mean reciprocal rank(MRR), an evaluation metric widely used in Information retrieval, was modified to fit the rating dataset. The evaluation metric was smoothed and simplied, and then was optimized. The algorithm was easy to parallelize and could operate on real data set. Experiments showed that this algorithm could improve recommendation performance.

Key words: time factor, matrix factorization, mean reciprocal rank, recommendation system, collaborative filtering

中图分类号: 

  • TP181
[1] LYU L Y, MEDO M, YEUNG C H, et al. Recommender systems[J]. The Journal of Physics Reports, 2012, 519(1):1-50.
[2] RICCI F, ROKACH L, SHAPIRA B, et al. Recommender systems handbook[M]. Berlin, Germany: Springer-Verlag, 2011.
[3] LEE D, SEUNG H. Algorithms for non-negative matrix factorization[J]. Advances in Neural Information Processing System, 2001, 32(6):556-562.
[4] SALAKHUTDINOV R, MNIH A. Probabilistic matrix factorization[J]. Advances in Neural Information Processing Systems, 2012:1257-1264.
[5] SALAKHUTDINOV R, MNIH A. Bayesian probabilistic matrix factorization using markov chain monte carlo[C] // Proceedings of the 25th International Conference on Machine Learning. New York, USA: ACM, 2008:880-887.
[6] LEE J, KIM S, LEBANON G, et al. Local low-rank matrix approximation[J]. Journal of Machine Learning Research, 2013, 28(2):82-90.
[7] KOREN Y. Factor in the neighbors: Scalable and accurate collaborative filtering[J]. ACM Transactions on Knowledge Discovery from Data, 2010, 4(1):1-24.
[8] CREMONESI P, KOREN Y, TURRIN R. Performance of recommender algorithms on top-n recommendation tasks[C] //Proceedings of the fourth ACM Conference on Recommender Systems. New York, USA: ACM, 2013:39-46.
[9] DING Y, LI X. Time weight collaborative filtering[C] //Proceedings of the 14th ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2005:485-492.
[10] GONG S J, CHENG G H. Mining user interest change for improving collaborative filtering[C] //Proceedings of the 2008 Second International Symposium on Intelligent Information Technology Application. Washington DC, USA: IEEE Computer Society, 2008:24-27.
[11] LEE T Q, PARK Y, PARK Y T. A time-based approach to effective recommender systems using implicit feedback[J]. Expert Systems with Applications, 2008, 34(4): 3055-3062.
[12] BURGES C, SHAKED T, RENSHAW E, et al. Learning to rank using gradient descent[C] //Proceedings of the 22nd International Conference on Machine Learning. New York, USA: ACM, 2005:89-96.
[13] RENDLE S, FREUDENTHALER C. Improving pairwise learning for item recommendation from implicit feedback[C] //Proceedings of the 7th ACM International Conference on Web Search and Cata Mining. New York, USA: ACM, 2014:273-282.
[14] CAO Z, QIN T, LIU T Y, et al. Learning to rank: from pairwise approach to listwise approach[C] //Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007:129-136.
[15] XU J, LIU T Y, LU M, et al. Directly optimizing evaluation measures in learning to rank[C] //Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2008: 107-114.
[16] WEIMER M, KARATZOGLOU A, LE Q V, et al. CofiRank-maximum margin matrix factorization for collaborative ranking[C] //Neural Information Processing Systems. Vancouver, Canada: ACM, 2007:3-8.
[17] SHI Y, KARATZOGLOU A, BALTRUNAS L, et al. TFMAP: optimizing map for top-n context-aware recommendation[C] //Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2012:155-164.
[18] SHI Y, KARATZOGLOU A, BALTRUNAS L, et al. CLIMF: learning to maximize reciprocal rank with collaborative less-is-more filtering[C] //Proceedings of the Sixth ACM Conference on Recommender Systems. New York, USA: ACM, 2012:139-146.
[19] KABBUR S, XIA N, KARYPIS G. FISM: factored item similarity models for top-N recommender systems[C] //Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2010: 659-667.
[20] GROUPLENS. Datasets Instruction[EB/OL]. [2015-04-15]. http://grouplens.org/datasets/movielens.
[21] LEE J, SUN M, LEBANON G. PREA [EB/OL].(2013-06-13)[2015-04-10]. http://prea.gatech.edu/download.html#ver20.
[22] LEE J, SUN M, LEBANON G. PREA: personalized recommendation algorithms toolkit[J]. The Journal of Machine Learning Research, 2012, 13(1):2699-2703.
[1] 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20.
[2] 李朔,石宇良. 基于位置社交网络中地点聚类推荐方法[J]. 山东大学学报(工学版), 2016, 46(3): 44-50.
[3] 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73.
[4] 张佳,林耀进,林梦雷,刘景华,李慧宗. 基于信息熵的协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(2): 43-50.
[5] 孙远帅,陈垚,刘向荣,陈珂,林琛. 基于项目层次相似性的推荐算法[J]. 山东大学学报(工学版), 2014, 44(3): 8-14.
[6] 陈大伟,闫昭*,刘昊岩. SVD系列算法在评分预测中的过拟合现象[J]. 山东大学学报(工学版), 2014, 44(3): 15-21.
[7] 李改1,2,3, 李磊2,3. 一种解决协同过滤系统冷启动问题的新算法[J]. 山东大学学报(工学版), 2012, 42(2): 11-17.
[8] 李国栋,赵威,田国会*,薛英花. 一种基于旋转矩阵分解的视觉伺服控制算法[J]. 山东大学学报(工学版), 2012, 42(1): 45-50.
[9] 王爱国,李廉*,杨静,陈桂林. 一种基于Bayesian网络的网页推荐算法[J]. 山东大学学报(工学版), 2011, 41(4): 137-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[2] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[3] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[4] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[5] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[6] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[7] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[8] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[9] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .
[10] 姚占勇,商庆森,赵之仲,贾朝霞 . 界面条件对半刚性沥青路面结构应力分布的影响[J]. 山东大学学报(工学版), 2007, 37(3): 93 -99 .