您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 28-33.doi: 10.6040/j.issn.1672-3961.0.2015.319

• • 上一篇    下一篇

基于非最小化优化的手眼标定方法

赵子健,陈兆瑞,李冰清   

  1. 山东大学控制科学与工程学院, 山东 济南 250061
  • 收稿日期:2015-10-07 出版日期:2016-08-20 发布日期:2015-10-07
  • 作者简介:赵子健(1979— ),男,山东济南人,讲师,博士,主要研究方向为机器人和计算机视觉. E-mail:zhaozijian@sdu.edu.cn
  • 基金资助:
    山东省优秀中青年科学家奖励研究基金资助项目(BS2013DX027);教育部博士点基金资助项目(20130131120036);国家自然科学基金资助项目(81401543);山东省科技重大专项(新兴产业)资助项目(2015ZDXX0801A01);山东大学基本科研业务费资助项目(自然科学专项)(2015QY001)

A new method for hand-eye calibration based on non-minimization optimization

ZHAO Zijian, CHEN Zhaorui, LI Bingqing   

  1. School of Control Science and Engineering, Shandong Unieversity, Jinan 250061, Shandong, China
  • Received:2015-10-07 Online:2016-08-20 Published:2015-10-07

摘要: 在分析手眼标定问题数值特征的基础上,提出一种新的基于非最小化优化的手眼标定方法。采用张量的形式描述手眼标定方程,提出了非最小化优化条件下的代价函数,通过特征计算求解相应估计方程。扰动分析证明了该方法求解的精确性。分别采用仿真数据和真实数据进行试验。试验结果显示,该方法能够通过无初值的计算实现手眼方程的求解,避免了优化迭代产生的复杂计算,具有较高的鲁棒性、有效性和天然的运动选择特性。与其他方法相比较,新方法大大节省了运算时间,并降低了计算误差,为机器人系统的实际标定提供一个很好的选择。

关键词: 非最小化优化, 计算机视觉, 视觉伺服, 机器人学, 手眼标定

Abstract: A novel hand-eye calibration method using non-minimization optimization was proposed based on the numerical analysis of hand-eye calibration problem. The hand-eye equation was described in the form of tensor, the cost function of non-minization optimization was proposed, and the corresponding estimation equation was solved by eign-computation. The perturbation analysis proved the accuracy of our method. In order to test our method, the experiments with both simulated and real data were performed. The experimental results showed that the proposed method avoided the iterative computation with starting values and had great robustness and validity. The motion selection was naturally matched with our method. Compared with other methods, the proposed method saved the computation time, reduced the computing errors, and could be regarded as a good option for real applications.

Key words: hand-eye calibration, robotics, computer vision, non-minimization optimization, visual servoing

中图分类号: 

  • TP242
[1] SHIU Y C, AHMAD S. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB[J]. IEEE Transactions on Robotics and Automation, 1989, 5(1):16-29.
[2] TSAI R Y, LENZ R K. A new technique for fully autonomous and efficient 3D robotics hand/eye calibration[J].IEEE Transactions on Robotics and Automation, 1989, 5(3):345-358.
[3] CHOU J C K, KAMEL M. Finding the position and orientation of a sensor on a robot manipulator using quaternions[J]. The International Journal of Robotics Research, 1991, 10(3):240-254.
[4] LU Y C, CHOU J C K. Eight-space quaternion approach for robotic hand-eye calibration[C] //Proceedings of IEEE International Conference on Systems, Man and Cybernetics. BC: IEEE, 1995, 4:3316-3321.
[5] CHEN H H. A screw motion approach to uniqueness analysis of head-eye geometry[C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR91). Maui, HI: IEEE, 1991:145-151.
[6] DANIILIDIS K. Hand-eye calibration using dual quaternions[J]. The International Journal of Robotics Research, 1999, 18(3):286-298.
[7] ZHAO Z, LIU Y. A hand-eye calibration algorithm based on screw motions[J]. Robotica, 2009, 27(2):217-223.
[8] ZHUANG H, Shiu Y C. A noise-tolerant algorithm for robotic hand-eye calibration with or without sensor orientation measurement[J]. IEEE Transactions on Systems, Man and Cybernetics, 1993, 23(4):1168-1175.
[9] FA I, LEGNANI G. Hand to sensor calibration: a geometrical interpretation of the matrix equation AX=XB[J]. Journal of Robotic Systems, 2005, 22(9):497-506.
[10] PARK F C, MARTIN B J. Robot sensor calibration: solving AX=XB on the Euclidean group[J]. IEEE Transactions on Robotics and Automation, 1994, 10(5):717-721.
[11] HORAUD R, DORNAIKA F. Hand-eye calibration[J]. The International Journal of Robotics Research, 1995, 14(3):195-210.
[12] DORNAIKA F, HORAUD R. Simultaneous robot-world and hand-eye calibration[J]. IEEE Transactions on Robotics and Automation, 1998, 14(4): 617-622.
[13] STROBL K H, HIRZINGER G. Optimal hand-eye calibration[C] //Proceedings of IEEE/RSJ Conference on Intelligent Robots and Systems. Beijing, China: IEEE, 2006: 4647-4653.
[14] ZHAO Z. Hand-eye calibration using convex optimization[C] //Proceedings of IEEE International Conference on Robotics and Automation(ICRA 2011). Shanghai, China: IEEE, 2011: 2947-2952.
[15] IKEUCHI K. Computer vision: a reference guide[M]. Berlin, Germany: Springer Link Press, 2016:355-358.
[16] RUKAND T, DIETMAYER K. Globally optimal hand-eye calibration under free choice of cost-function[C] //Proceedings of IEEE International Conference on Consumer Electronics.Berlin, Germany: IEEE, 2012: 1-5.
[17] HELLER J, HENRION D, PAIDLA T. Hand-eye and robot-world calibration by global polynomial optimization[C] //Proceedings of IEEE International Conference on Robotics and Automation(ICRA 2014). Hong Kong, China: IEEE, 2014: 3157-3164.
[18] HELLER J, HENRION D, PAIDLA T. Globally optimal hand-eye calibration using branch-and-bound[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015(1): 1.
[19] KANATANI K. Statistical optimization for geometric estimation: minimization vs. non-minimization[C] //Proceedings of IEEE International Conference on Pattern Recognition. Stockholm, Sweden: IEEE, 2014: 1-8.
[20] NEUDECKER H. A note on Kronecker matrix products and matrix equation systems[J]. SIAM Journal on Applied Mathematics, 1969, 17(3): 603-606.
[21] ANDREFF N, HORAUD R, ESPIAU B. On-line hand-eye calibration[C] //Proceedings of 2nd International Conference on 3-D Digital Imaging and Modeling. Ottawa, Canada:IEEE, 1999: 430-436.
[22] SCHMIDT J, NIEMANN H. Data selection for hand-eye calibration: a vector quantization approach[J]. The International Journal of Robotics Research, 2008, 27(9): 1027-1053.
[23] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334.
[24] IGEL C, TOUSSAINT M, WAN W. Rprop using the natural gradient[M] //Trends and applications in constructive approximation. Boston, U S A: Birkhäuser Basel, 2005: 259-272.
[25] NESTEROV Y, NEMIROVSKII A, YE Y. Interior-point polynomial algorithms in convex programming[M]. Philadelphia, U S A: Society for Industrial and Applied Mathematics, 1994.
[1] 杨元慧,李国栋,吴春富,王小龙,蔡小伟. 移动机械臂手眼关系标定及视觉伺服控制方法[J]. 山东大学学报(工学版), 2016, 46(5): 54-63.
[2] 袁丽,田国会*,李国栋. #br# NAO机器人的视觉伺服物品抓取操作[J]. 山东大学学报(工学版), 2014, 44(3): 57-63.
[3] 李国栋,赵威,田国会*,薛英花. 一种基于旋转矩阵分解的视觉伺服控制算法[J]. 山东大学学报(工学版), 2012, 42(1): 45-50.
[4] 丛奎荣 韩杰 常发亮. 视觉机器人货物轮廓提取与定位[J]. 山东大学学报(工学版), 2010, 40(1): 15-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[3] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[4] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[5] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[6] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[7] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[8] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[9] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[10] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .