山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 117-124.doi: 10.6040/j.issn.1672-3961.0.2016.240
赵康1,王春义2,杨冬3,刘玉田1*
ZHAO Kang1, WANG Chunyi2, YANG Dong3, LIU Yutian1*
摘要: 随着特高压输电容量的不断提高,受端电网的短路电流超标问题,特别是单相短路电流超标问题越来越严重。分析单相短路电流的超标原因及其专门限制措施,并对各种限流措施的灵敏度和经济性进行统一的定义和描述。针对限流措施的配置对象定义对象灵敏度的概念,基于对象灵敏度筛选限流措施配置对象,以避免维数灾。以限流方案的经济性和电网结构紧密性为目标函数,以单相短路电流和三相短路电流同时满足要求为主要约束条件,建立了特高压受端电网的综合限流优化模型,采用自适应混合PSO算法进行求解。济宁220 kV规划电网的仿真结果表明,所得限流优化方案能同时有效限制单相和三相短路电流。
中图分类号:
[1] 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015. [2] 覃琴, 郭强, 周勤勇, 等. 国网 “十三五” 规划电网面临的安全稳定问题及对策[J]. 中国电力, 2015, 48(1): 25-32. QIN Qin, GUO Qiang, ZHOU Qingyong, et al. The security and stablity of power grid in 13th five-year planning and countermeasures[J]. Electric Power, 2015, 48(1):25-32. [3] NAGATA M, TANAKA K, TANIGUCHI H. FCL location selection in large scale power system[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 2489-2494. [4] SARMIENTO H G, CASTELLANOS R, PAMPIN G, et al. An example in controlling short circuit levels in a large metropolitan area[C] //Power Engineering Society General Meeting. Toronto: IEEE, 2003: 2399-2404. [5] HONGESOMBUT K, MITANI Y, TSUJI K. Optimal location assignment and design of superconducting fault current limiters applied to loop power systems[J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 1828-1831. [6] KIM S Y, BAE I S, KIM J O. An optimal location for superconducting fault current limiter considering distribution reliability[C] //Power and Energy Society General Meeting. Minneapolis, U S A: IEEE, 2010: 1-5. [7] TENG J H, LU C. Optimum fault current limiter placement with search space reduction technique[J]. Generation, Transmission & Distribution, IET, 2010, 4(4): 485-494. [8] 张永康, 蔡泽祥, 李爱民, 等. 限制500 kV电网短路电流的网架调整优化算法[J]. 电力系统自动化, 2009, 33(22): 34-39. ZHANG Yongkang, CAI Zexiang, LI Aimin, et al. An optimization algorithm for short-circuit limitation of 500 kV power grid by adjusting power grid configuration[J]. Automation of Electric Power Systems, 2009, 33(22): 34-39. [9] 胡文旺, 卫志农, 孙国强, 等. 基于灵敏度法的超导故障限流器的优化配置[J]. 电力系统自动化, 2012, 36(22): 62-67. HU Wenwang, WEI Zhinong, SUN Guoqiang, et al. Optimal allocation of superconducting fault limiters based on sensitivity method[J]. Automation of Electric Power Systems, 2012, 36(22): 62-67. [10] 陈丽莉, 黄民翔, 张弘, 等. 电网限流措施的优化配置[J]. 电力系统自动化, 2009, 33(11): 38-42. CHEN Lili, HUANG Minxiang, ZHANG Hong, et al. An optimization strategy for limiting short circuit current[J]. Automation of Electric Power Systems, 2009, 33(11): 38-42. [11] 陈丽莉, 黄民翔, 许诺, 等. 考虑潮流约束的限流措施优化配置[J]. 高电压技术, 2010, 36(6): 1572-1576. CHEN Lili, HUANG Minxiang, XU Nuo, et al. Optimal strategy for short-circuit limiters deployment considering power flower[J]. High Voltage Engineering, 2010, 36(6): 1572-1576. [12] 刘树勇, 孔昭兴, 张来. 天津电网 220 kV 短路电流限制措施研究[J]. 电力系统保护与控制, 2009, 37(21): 103-107. LIU Shuyong, KONG Zhaoxing, ZHANG Lai. Application of measures of limiting 220 kV short circuit currents in Tianjin power grid[J]. Power System Protection and Control, 2009, 37(21): 103-107. [13] 陆国庆, 姜新宇, 江健武, 等. 110 kV 及 220 kV 系统变压器中性点经小电抗接地方式的研究及其应用[J]. 电网技术, 2006, 30(1): 70-74. LU Guoqing, JIANG Xinyu, JIANG Jianwu, et al. Research on neutral grounding via small reactor for 110 kV and 220 kV power transformers and its application[J]. Power System Technology, 2006, 30(1): 70-74. [14] 梁纪峰, 刘文颖, 梁才, 等. 500 kV 自耦变中性点串接小电抗对接地短路电流限制效果分析[J]. 电力系统保护与控制, 2011, 39(13): 96-99. LIANG Jifeng, LIU Wenying, LIANG Cai, et al. Analysis of limiting effect of 500 kV autotransformer neutral grounding by small reactance on ground short-circuit current[J]. Power System Protection and Control, 2011, 39(13): 96-99. [15] 朱天游. 三峡电站 500 kV 主变压器中性点接地方式优化选择[J]. 电网技术, 1997, 21(5): 48-51. ZHU Tianyou. Optimal selection of 500 kV main transformer neutral grounding in Three Gorges hydroelectric power station[J]. Power System Technology, 1997, 21(5): 48-51. [16] 朱天游. 500 kV 自耦变压器中性点经小电抗接地方式在电力系统中的应用[J]. 电网技术, 1999, 23(4): 15-18. ZHU Tianyou. Application of autotransformer neutral grounding by small reactance in 500 kV power system[J]. Power System Technology, 1999, 23(4): 15-18. [17] YANG D, ZHAO K, ZHAO Y, et al. Optimization and decision for limiting short circuit current considering sensitivity ranking[C] //2014 International Conference on Power System Technology(POWERCON). Chengdu: IEEE, 2014: 864-870. [18] HUANG H, XU Z, LIN X. Improving performance of multi-infeed HVDC systems using grid dynamic segmentation technique based on fault current limiters[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1664-1672. [19] CHEN L, HUANG M, WU J, et al. An optimal strategy for short circuit current limiter deployment[C] //2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE, 2010: 1-4. [20] TANAKA K, TAKAHASHI K. An efficient method of modifying Z-matrix elements in short-circuit capacity calculations[J]. Electrical Engineering in Japan, 1994, 114(2): 48-56. [21] 代飞, 崔挺, 徐箭, 等. 基于综合灵敏度分析的电压校正控制[J]. 电力自动化设备, 2011, 31(12): 15-20. DAI Fei, CUI Ting, XU Jian, et al. Voltage correction control based on comprehensive sensitivity analysis[J]. Electric Power Automation Equipment, 2011, 31(12): 15-20. [22] ZHANG W, LIU Y. Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm[J]. International Journal of Electrical Power & Energy Systems, 2008, 30(9): 525-532. [23] YANG D, ZHAO K, LIU Y. Coordinated optimization for controlling short circuit current and multi-infeed DC interaction[J]. Journal of Modern Power Systems and Clean Energy, 2014, 2(4): 374-384. [24] 于松青, 侯承昊, 孙英涛. 基于系统动力学的山东省电力需求预测[J]. 山东大学学报(工学版), 2015, 45(6): 91-98. YU Songqing, HOU Chenghao, SUN Yingtao. Power demand forecasting in Shandong province with system dynamics[J]. Journal of Shandong University(Engineering Science), 2015, 45(6): 91-98. [25] 杨冬, 周勤勇, 刘玉田. 基于灵敏度分析的限流方案优化决策方法[J]. 电力自动化设备, 2015, 35(5): 111-118. YANG Dong, ZHOU Qinyong, LIU Yutian. Short circuit current limiting strategy optimization based on sensitivity analysis[J]. Electric Power Automation Equipment, 2015, 35(5): 111-118. |
[1] | 张希华,卢姗姗,苏建军. 全球能源互联网关键技术专利发展现状与对策[J]. 山东大学学报(工学版), 2017, 47(6): 143-150. |
[2] | 李海石, 徐向艺, 张磊. “一带一路”背景下全球能源互联网运行机制构建[J]. 山东大学学报(工学版), 2017, 47(6): 134-142. |
[3] | 张恒旭,韩林晓,石访. 基于最小偏差法的全球能源优化配置方法[J]. 山东大学学报(工学版), 2017, 47(6): 128-133. |
[4] | 谢国辉,樊昊. 太阳能光热发电技术成熟度预测模型[J]. 山东大学学报(工学版), 2017, 47(6): 83-88. |
[5] | 刘晓明,许乃媛,杨斌,魏鑫,张丽娜,曹永吉. 全球能源互联网受端特高压网架双阶段优化[J]. 山东大学学报(工学版), 2017, 47(6): 1-6. |
[6] | 石访,张恒旭,张磊. 全球能源互联网宏观运行特性仿真框架[J]. 山东大学学报(工学版), 2017, 47(6): 151-156. |
[7] | 张恒旭,施啸寒,刘玉田,杨冬. 我国西北地区可再生能源基地对全球能源互联网构建的支撑作用[J]. 山东大学学报(工学版), 2016, 46(4): 96-102. |
|