山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 1-6.doi: 10.6040/j.issn.1672-3961.3.2014.127
• 机器学习与数据挖掘 • 下一篇
朱红1,2, 丁世飞2
ZHU Hong1,2, DING Shifei2
摘要: 为了克服单一聚类算法的不足,将粒度计算与聚类算法相结合,提出基于聚合网络的变粒度二次聚类方法(twice clustering method based on the variable granularity and clustering network, VGTC)。首次聚类的目的是寻找合适的聚合粒层,以发现数据的局部结构,二次聚类在此基础之上完成对论域的聚类操作。创新之处在于依据聚类算法参数的改变来调整聚类的粒度,通过粒度计算将两种聚类算法的优点融合在一起。以基于k均值与层次聚类算法的变粒度自适应二次聚类方法(Twice clustering adaptive method of variable granulation based on k-means and hierarchical clustering algorithms, KHVGTC)为例,从理论和实验验证了VGTC算法的准确率和效率。
中图分类号:
[1] 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J].软件学报, 2008, 19(1):48-60. SUN Jigui, LIU Jie, ZHAO Lianyu. Clustering algorithms research[J]. Journal of Software, 2008, 19(1):48-60. [2] STREHL A, GHOSH J. Cluster Ensembles:a knowledge reuse framework for combing multiple partitions[J]. Journal of Machine Learning Research, 2003, 3(3):583-617. [3] MINAEI-BIDGOLI B, TOPCHY A, PUNCH W F. A comparison of resampling methods for clustering ensembles[C]//International Conference on Machine Learning, Models, Technologies and Applications. Las Vegas, USA:CSREA, 2004:939-945. [4] 欧阳浩, 陈波, 王萌, 等. 基于网格的二次K-means聚类算法[J]. 广西工学院学报, 2012, 23(1):24-27. OUYANG Hao, CHEN Bo, WANG Meng, et al. Two times K-means algorithm based on grid[J]. Journal of Guangxi University of Technology, 2012, 23(1):24-27. [5] 胡学钢, 曹永照, 吴共庆. 一种有效的数据流二次聚类算法[J]. 西南交通大学学报, 2009, 44(4):490-494. HU Xuegang, CAO Yongzhao, WU Gongqing. Effective twice-clustering algorithm for data streams[J]. Journal of Southwest Jiaotong University, 2009, 44(4):490-494. [6] ZHU H, DING S F, XU L, et al. Research and development of granularityclustering[J]. Communications in Computer and Information Science, 2011, 159(5):253-258. [7] DING S F, XU L, ZHU H, et al. Research and progress of cluster algorithms basedon granular computing[J]. International Journal of Digital Content Technology and its Applications, 2010, 4(5):96-104. [8] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353. [9] PAWLAK Z. Rough sets[J]. International Journal of Information and Computer Sciences, 1982, 11(5):145-172. [10] ZHANG B, ZHANG L. Theory and applications of problem solving[M]. AmsterdamThe Kingdom of Holland:North-Holland Publishing Co, 1992. [11] RUSPINI E H. A new approach to clustering[J]. Information and Control, 1969, 15(1):22-32. [12] 李远成, 阴培培, 赵银亮. 基于模糊聚类的推测多线程划分算法[J].计算机学报, 2014, 37(3):580-592. LI Yuancheng, YIN Peipei, ZHAO Yinliang. A FCM—based thread partitioning algorithm for speculative multithreading[J]. Chinese Journal of Computers, 2014, 37(3):580-592. [13] 唐利明, 王洪珂, 陈照辉, 等. 基于变分水平集的图像模糊聚类分割[J]. 软件学报, 2014, 25(7):1570-1582. TANG Liming, WANG Hongke, CHEN Zhaohui, et al. Image fuzzy clustering segmentation based on variational level set[J]. Journal of Software, 2014, 25(7):1570-1582. [14] MALYSZKO D, STEPANIUK J. Rough entropy hierarchical agglomerative clustering in image segmentation[J]. Transactions on Rough Sets XIII, 2011, 6499:89-103. [15] YANTO I T R, HERAWAN T, DERIS M M. Data clustering using variable precision rough set[J]. Intelligent Data Analysis, 2011, 15(4):465-482. [16] ZHANG L, ZHANG B. Quotient space based cluster analysis[C]//Proceedings of Foundations and Novel Approaches in Data Mining. Berlin, Germany:Springer, 2006:259-269. [17] XUE Z X, SHANG Y L, FENG A F. Semi-supervised outlier detection based on fuzzy rough C-means clustering[J]. Mathematics and Computers in Simulation, 2010, 80(9):1911-1921. [18] MAJI P. Fuzzy-rough supervised attribute clustering algorithm and classification of microarray data[J]. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics, 2011, 41(1):222-233. [19] ZHOU J, PEDRYCZ W, MIAO D Q. Shadowed sets in the characterization of rough-fuzzy clustering[J]. Pattern Recognition, 2011, 44(8):1738-1749.[ZK)] [20] [ZK(]张铃, 张钹. 模糊商空间理论(模糊粒度计算方法)[J]. 软件学报, 2003, 14(4):770-776. ZHANG Ling, ZHANG Bo. Theory of fuzzy quotient space (Methods of fuzzy granular computing)[J]. Journal of Software, 2003, 14(4):770-776.[ZK)] [21] [ZK(]严莉莉, 张燕平, 胡必云.基于商空间粒度的覆盖聚类算法[J]. 计算机应用研究, 2008, 25(1):47-49. YAN Lili, ZhANG Yanping, HU biyun. Covering clustering algorithm based on quotient space granularity[J]. Application Research of Computers, 2008, 25(1):47-49.[ZK)] [22] [ZK(]卜东波, 白硕, 李国杰. 聚类/分类中的粒度原理[J]. 计算机学报, 2002, 25(8):810-815. BU Dongbo, BAI Shuo, LI Guojie. Principle of granularity in clustering and classification[J]. Chinese Journal of Computers, 2002, 25(8):810-815.[ZK)] [23] [ZK(]王伦文. 聚类的粒度分析[J]. 计算机工程与应用, 2006, 42(5):29-31. WANG Lunwen. Study of granular analysis in clustering[J]. Computer Engineering and Applications, 2006, 42(5):29-31.[ZK)] [24] ZHU H, DING S F, XU L, et al. A parallel attribute reduction algorithm based on affinity propagation clustering[J]. Journal of Computers, 2013, 8(4):990-997. [25] ZHU H, DING S F, HAN Z, et al. Attribute granulation based on attribute discernibility and AP algorithm[J]. Journal of Software, 2013, 8(4):834-841.[ZK)] [26] [ZK(]汪小寒, 张燕平, 赵姝, 等. 基于分层递阶粒度聚类法的空气质量评价[J].计算机应用研究, 2013, 30(1):192-194. WANG Xiaohan, ZHANG Yanping, ZHAO Shu, et al. Air quality evaluation based on delaminated granular clustering method[J]. Application Research of Computers, 2013, 30(1):192-194. |
[1] | 王婷婷,翟俊海,张明阳,郝璞. 基于HBase和SimHash的大数据K-近邻算法[J]. 山东大学学报(工学版), 2018, 48(3): 54-59. |
[2] | 何正义,曾宪华,郭姜. 一种集成卷积神经网络和深信网的步态识别与模拟方法[J]. 山东大学学报(工学版), 2018, 48(3): 88-95. |
[3] | 崔晓松,王颖,孟佳, 邹丽. 基于语言值相似度推理的网络商家自评价方法[J]. 山东大学学报(工学版), 2018, 48(1): 1-7. |
[4] | 姚宇,冯健,张化光,韩克镇. 一种基于椭球体支持向量描述的异常检测方法[J]. 山东大学学报(工学版), 2017, 47(5): 195-202. |
[5] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
[6] | 刘英霞,王希常,唐晓丽,常发亮. 基于小波域特征和贝叶斯估计的目标检测算法[J]. 山东大学学报(工学版), 2017, 47(2): 63-70. |
[7] | 何正义,曾宪华,曲省卫,吴治龙. 基于集成深度学习的时间序列预测模型[J]. 山东大学学报(工学版), 2016, 46(6): 40-47. |
[8] | 王梅,曾昭虎,孙莺萁,杨二龙,宋考平. 基于输入K-近邻的正则化路径上SVR贝叶斯组合[J]. 山东大学学报(工学版), 2016, 46(6): 8-14. |
[9] | 陈泽华,尚晓慧,柴晶. 基于混合Hausdorff距离的多示例学习近邻分类器[J]. 山东大学学报(工学版), 2016, 46(6): 15-22. |
[10] | 王志强,文益民,李芳. 基于多方面评分的景点协同推荐算法[J]. 山东大学学报(工学版), 2016, 46(6): 54-61. |
[11] | 黄丹,王志海,刘海洋. 一种局部协同过滤的排名推荐算法[J]. 山东大学学报(工学版), 2016, 46(5): 29-36. |
[12] | 莫小勇,潘志松,邱俊洋,余亚军,蒋铭初. 基于在线特征选择的网络流异常检测[J]. 山东大学学报(工学版), 2016, 46(4): 21-27. |
[13] | 庞俊涛, 张晖, 杨春明, 李波, 赵旭剑. 基于概率矩阵分解的多指标协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(3): 65-73. |
[14] | 翟俊海,张素芳,胡文祥,王熙照. 核心集径向基函数极限学习机[J]. 山东大学学报(工学版), 2016, 46(2): 1-5. |
[15] | 江峰,杜军威,刘国柱,眭跃飞. 基于加权的K-modes聚类初始中心选择算法[J]. 山东大学学报(工学版), 2016, 46(2): 29-34. |
|