您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 22-29.doi: 10.6040/j.issn.1672-3961.0.2017.067

• 机器学习与数据挖掘 • 上一篇    下一篇

带几何约束的彩色图像选择性分割

王雪琴1,2,李树荣1,于妤1,王家岩1,2   

  1. 1. 中国石油大学(华东)信息与控制工程学院, 山东 青岛 266580;2. 山东科技大学电子通信与物理学院, 山东 青岛 266590
  • 收稿日期:2017-02-24 出版日期:2018-04-20 发布日期:2017-02-24
  • 作者简介:王雪琴(1979— ),女,山东栖霞人,讲师,博士研究生,主要研究方向为图像处理,信号与系统,最优控制等. E-mail:jiaxue12@sina.com
  • 基金资助:
    国家自然科学基金资助项目(60974039,61573378)

Color image selective segmentation under geometrical constraints

WANG Xueqin1,2, LI Shurong1, YU Yu1, WANG Jiayan1,2   

  1. 1.College of Information and Control Engineering, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    2. College of Electronic, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Received:2017-02-24 Online:2018-04-20 Published:2017-02-24

摘要: 为了解决彩色图像分割任务中有选择性的定位感兴趣区域的具体需求,基于Lavdie-Chen的灰度图像单水平集选择性分割方法,提出带几何约束的彩色图像选择性分割方法。该试验方法将彩色图像作为一个整体,求其梯度及边缘检测函数,借助边缘检测函数、目标物体约束点确定的距离函数以及形成的多边形内外面积,共同决定曲线演化进程中的方向与速度。区域信息的加入克服了边缘函数依赖单一图像梯度的缺点;正则化优化算法的引入克服了凹陷处分割效果不理想的缺点;加法分裂算子算法可以快速求解模型的Euler-Lagrange方程。试验结果表明,本研究提出的彩色图像选择性分割方法具有有效性强和正确性高的特点。

关键词: 加法算子分裂算法, 边缘检测函数, 彩色图像, 选择性分割, Euler-Lagrange方程

Abstract: In order to solve the specific requirements of selectivity during the course of color image segmentation, an active contour-based color image segmentation method under geometrical constraints was proposed based on the gray image selective segmentation using one level set by Lavdie-Chen. A color image was treated as a whole for the gradient and the edge detection function. The velocity and direction of the curve evolution were determined by the edge detection function, the distance function defined about a set of points near the boundary of the interested region and the inner and outer polygon areas of the given points. Region information could help to overcome the drawbacks of edge functions relying on a single image gradient; the regularization algorithm was introduced to overcome the shortcomings of the poor segmentation effect in the depression;the Euler-Lagrange equation was quickly solved by the additive operator splitting method. Experimental results showed that the proposed color image segmentation method had the characteristics of high validity and high accuracy to selectively segment the wanted region.

Key words: color image, edge detection function, selective segmentation, additive operator splitting method, Euler-Lagrange equation

中图分类号: 

  • TP391
[1] GUO Q, WANG L, SHEN S. Multiple-channel local binary fitting model for medical image segmentation[J]. Chinese Journal of Electronics, 2015, 24(4): 802-806.
[2] CHEN B, ZOU Q H, PAN B B. A novel adaptive partial differential equation model for image segmentation[J]. Applicable Analysis, 2014, 93(11): 2440-2450.
[3] LI C, XU C, GUI C, et al. Level set evolution without re-initialization: a new variational formulation[C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005: 430-436.
[4] ZHU G, ZHANG S, ZENG Q, et al. Boundary-based image segmentation using binary level set method [J]. Optical Engineering, 2007, 46(5): 1-3.
[5] LI C, XU C, GUI C, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE Transactions on Image Processing, 2010, 19(12): 3243-3254.
[6] KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321-331.
[7] CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours[J]. International Journal of Computer Vision, 1997, 22(1): 61-79.
[8] 戚世乐,王美清. 自适应分割弱边缘的活动轮廓模型[J]. 山东大学学报(工学版), 2013, 43(6): 17-20. QI Shile, WANG Meiqing. Adaptive active contour model for weak boundary extraction[J]. Journal of Shandong University(Engineering Science), 2013, 43(6): 17-20.
[9] CHAN T F, VESE L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
[10] MUMFORD D, SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on Pure & Applied Mathematics, 1989, 42(5):577-685.
[11] GAO S, BUI T D. Image segmentation and selective smoothing by using Mumford-Shah model[J]. IEEE Transactions on Image Processing, 2005, 14(10):1537-1549.
[12] GOUT C, GUYADER C L, VESE L. Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods[J]. Numerical Algorithms, 2005, 39(1): 155-173.
[13] LIE J, LYSAKER M, TAI X C. A binary level set model and some applications to Mumford-Shah image segmentation[J]. IEEE Transactions on Image Processing, 2006, 15(5): 1171-1181.
[14] 任永峰, 周静波. 基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版),2015, 45(6):1-6. REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion[J]. Journal of Shandong University(Engineering Science), 2015, 45(6): 1-6.
[15] 朱洪锦, 范洪辉, 叶飞跃,等. 基于区域合并与轮廓模型的图像序列人物轮廓分割[J]. 山东大学学报(工学版), 2014, 44(6): 8-14. ZHU Hongjin, FAN Honghui, YE Feiyue, et al. Human contour segmentation in image sequence based on region consolidation and contour model[J]. Journal of Shandong University(Engineering Science), 2014, 44(6): 8-14.
[16] RADA L, CHEN K. Improved selective segmentation model using one level-set[J]. Journal of Algorithms & Computational Technology, 2013, 7(4): 509-540.
[17] LE GUYADER C, GOUT C. Geodesic active contour under geometrical conditions: theory and 3D applications[J]. Numerical Algorithms, 2008, 48(1-3): 105-133.
[18] MALLADI R, SETHIAN J A, VEMURI B C. Shape modeling with front propagation: a level set approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(2):158-175.
[19] HAN X H, XIONG X, DUAN F. A new method for image segmentation based on BP neural network and gravitational search algorithm enhanced by cat chaotic mapping[J]. Applied Intelligence, 2015, 43(4): 855-873.
[20] WANG X F, MIN H, ZOU L, et al. An efficient level set method based on multi-scale image segmentation and hermite differential operator[J]. Original Research Article Neurocomputing, 2015, 188: 90-101.
[21] RADA L, CHEN K. A new variational model with dual level set functions for selective segmentation[J]. Communications in Computational Physics, 2012, 12(1): 261-283.
[22] CHAN T F, SANBERG B Y, VESE L A. Active contours without edges for vector-valued images[J]. Journal of Visual Communication and Image Representation, 2000, 11(2): 130-141.
[23] 樊淑炎, 丁世飞. 基于多尺度的改进Graph cut算法[J]. 山东大学学报(工学版), 2016, 46(1): 28-33. FAN Shuyan, DING Shifei. An improved multi-scale graph cut algorithm[J]. Journal of Shandong University(Engineering Science), 2016, 46(1): 28-33.
[24] BADSHAH N, CHEN K. Image selective segmentation under geometrical constraints using an active contour approach[J]. Communications in Computational Physics, 2010, 7(4): 759-778.
[25] RADA L, CHEN K. A variational model and its numerical solution for local, selective and automatic segmentation[J]. Numerical Algorithms, 2014, 66(2): 399-430.
[1] 王玉英1,张西忠2,杨森2. 基于新型矢量排序的soft多结构形态学彩色图像处理[J]. 山东大学学报(工学版), 2011, 41(2): 18-22.
[2] 李岳阳,王士同. 基于鲁棒性神经模糊网络的脉冲噪声滤波算法[J]. 山东大学学报(工学版), 2010, 40(5): 164-170.
[3] 冯显英 张成梁 杨丙生 李蕾. 基于RGB颜色空间的异性纤维识别检测算法[J]. 山东大学学报(工学版), 2009, 39(5): 68-72.
[4] 吴天柱 . 基于RBF神经网络的彩色图像盲水印算法[J]. 山东大学学报(工学版), 2008, 38(2): 51-55 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!