您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (3): 58-64.doi: 10.6040/j.issn.1672-3961.1.2015.092

• • 上一篇    下一篇

基于半色调图像的邻域相似性描述子方法

钟智彦,文志强*, 张潇云,叶德刚   

  1. 湖南工业大学计算机与通信学院, 湖南 株洲 412007
  • 收稿日期:2015-05-12 出版日期:2016-06-30 发布日期:2015-05-12
  • 通讯作者: 文志强(1973— ),男,湖南湘乡人,教授,博士,主要研究方向为图像处理与模式识别. E-mail:zhqwen20001@163.com E-mail:zzy150735@163.com
  • 作者简介:钟智彦(1990— ),女,湖南郴州人,硕士研究生,主要研究方向为图像处理. E-mail:zzy150735@163.com
  • 基金资助:
    国家自然科学基金资助项目(61170102);湖南省研究生科研创新资助项目(CX2015B566);湖南省自然科学基金资助项目(2014JJ2115,015JJ2046)

Neighborhood similarity descriptor used in halftone image

ZHONG Zhiyan, WEN Zhiqiang*, ZHANG Xiaoyun, YE Degang   

  1. School of Computer &
    Communication, Hunan University of Technology, Zhuzhou 412007, Hunan, China
  • Received:2015-05-12 Online:2016-06-30 Published:2015-05-12

摘要: 局部二值化模式是对局部信息进行特征提取,适合解决纹理特征不明显的图像特征提取问题,但这种方法存在特征维数高的问题。针对此问题,提出一种适用于半色调图像特征提取的邻域相似性描述子方法。该方法将8个邻域分别与中心像素值进行比较运算,然后求这8个运算值间的相似性指标。相似性指标的统计量进行归一化后作为图像的纹理特征向量。试验中,采用BP神经网络对提取图像特征进行分类试验。试验结果表明,在计算复杂度、识别精度等方面,本研究提出的方法优于单纯使用局部二值化模式算法。

关键词: 中心像素, 特征提取, 邻域相似性描述子, 局部二值化模式, 半色调图像

Abstract: Local binary pattern was obtained by extracting local features, which was appropriate for unobvious textural features but suffered high feature dimension problem. To solve this problem, the neighborhood similarity descriptor method for halftone image feature extraction was proposed. First, the center pixel was compared with its eight neighborhood pixels. Second, the similarity index was computed for those pixel pairs. The similarity index was taken as textural feature vector after normalizing the statistics. Finally, BP neural network was adopted to classify the extracted image features in experiment. Experimental results showed that the proposed method was better than the local binary pattern algorithm in the computational complexity and recognition accuracy.

Key words: local binary pattern, halftone image, feature extraction, neighborhood similarity descriptor, center pixel

中图分类号: 

  • TP391
[1] 文志强,胡永祥,朱文球. 基于统计量模板的半色调图像特征提取与分类[J]. 计算机科学,2013, 40(12):94-112. WEN Zhiqiang, HU Yongxiang, ZHU Wenqiu. Feature extraction and classification of halftone image based on statistics template[J].Compute Science, 2013, 40(12):94-112.
[2] 孔月萍,曾平.图像逆半调及其质量评价技术研究[D].西安:西安电子科技大学,2008. KONG Yueping, ZENG Ping. A study of inverse halftoning and quality assessment schemes[D]. Xi'an:Xidian University, 2008.
[3] ULICHNEY R A. Dithering with blue noise[J]. Proceedings of the IEEE,1988, 76(1):56-79.
[4] STEVEBSON R. Inverse halftoning via MAP estimation[J].IEEE Transaction on Image Processing, 1997, 6(4):574-583.
[5] KNUTH D E. Digital halftones by dot diffusion[J]. ACM Transactions on Graphics(TOG), 1987, 6(4):245-273.
[6] MESE M, VAIDYANATHAN P P. Optimized halftoning using dot diffusion and methods for inverse halftoning[J]. Image Processing, IEEE Transactions on, 2000, 9(4):691-709.
[7] MESE M, VAIDYANATHAN P P. Recent advances in digital halftoning and inverse halftoning methods[J]. IEEE Trans. on Ciruits and Systems: Fundamental Theory and Applications, 2002, 49(6):790-805.
[8] SELDOWITZ M A, ALLEBACH J P, SWEENEY D E. Synthesis of digital holograms by direct binary search[J]. Applid Optics, 1987, 26(14):2788-2798.
[9] LIU Y F, GUO J M, LEE J D.Inverse halftoning based on the Bayesian theorem[J]. IEEE Trans on Image Processing, 2011, 20(4):1077-1084.
[10] CHANG P C,YU C S.Neural net classification and LMS reconstruction to halftone images[C] //Proceedings of SPIE-The International Society for Optical Engineering. San Jose, USA: SPIE, 1997:592-602.
[11] 刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635. LIU Li, KUANG Gangyao. Overview of image texture feature extraction methods[J]. Journal of Image and Graphics, 2009, 14(4):622-635.
[12] RIDDER D, LOOG M, REINDERS M. Local fisher embedding[C] //Proceedings of the 17th International Conference on Pattern Recognition. New York, USA: IEEE, 2004:295-298.
[13] 文志强,朱文球,胡永祥.半调图像的分类方法[J].山东大学学报(工学版), 2013, 43(4):7-12. WEN Zhiqiang, ZHU Wenqiu, HU Yongxiang. A classification method of halftone image[J]. Journal of Shandong University(Engineering Science), 2013, 43(4):7-12.
[14] 孔月萍,曾平,张跃鹏.一种半调图像分类识别算法[J]. 西安电子科技大学学报(自然科学版),2011,38(5):62-69. KONG Yueping, ZENG Ping, ZHANG Yuepeng. Classification and recognition algorithm for the halftone image[J]. Journal of Xidian University(Nature Science), 2011, 38(5):62-69.
[15] WEN Zhiqiang, HU Yongxiang, ZHU Wenqiu. A novel classification method of halftone image via statistics matrices[J]. IEEE Transaction on Image Processing, 2014, 23(11):4724-4736.
[16] 梁永峰,黄进.一种改进的误差扩散算法[D].西安:西安电子科技大学, 2013. LIANG Yongfeng, HUANG Jin. An improve error diffusion algorithm[D]. Xi'an:Xidian University, 2013.
[17] 姚莉.数字半调技术及其评价方法研究[J].计算机工程与应用,2010,46(3):4-8. YAO Li. Review on digital halftoning and quality assessment schemes[J]. Computer Engineering and Applications, 2010, 46(3):4-8.
[18] OJALA T, PIETIKAINEN M, HARWOOD D. A comparative study of texture measures with classification based on featured distributions[J]. Pattern Recognition, 1996, 29(1):51-59.
[19] 徐少平,刘小平,李春泉,等. 基于LBP值对空间统计特征的纹理描述符[J]. 模式识别与人工智能,2013, 26(8):669-776. XU Shaoping, LIU Xiaoping, LI Chunquan, et al. Texture descriptor based on spatial feature of local binary pattern code pair[J]. Pattern Recognition and Artificial Intelligence, 2013, 26(8):669-776.
[20] CHUN H, CHANG H, LIU T. Local discriminant embedding and its variants[C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2005:846-853.
[21] FREITAS P G, FARIAS M C Q, DEARAUJO A P F. Fast inverse halftoning algorithm for ordered dithered images[C] //Graphics, Patterns and Images(Sibgrapi), 2011 24th SIBGRAPI Conference on. Alagoas, Brazil: IEEE, 2011:250-257.
[22] HUANG Di, SHAN Caifeng, ARDABILIAN Metal. Local binary patterns and its application to facial image analysis: a survey[J]. IEEE transaction on Systems, Man and Cybernetics, 2011, 41(6):765-781.
[23] REN J, JIANG X, YUAN J. Noise-resistant local binary pattern with an embedded error-correction mechanism[J]. IEEE transaction on Image Processing, 2013, 22(10):4049-4060.
[24] BAQAI F A, ALLEBACH J P. Halftoning via direct binary search using analytical and stochastic printer models[J]. Image Processing, IEEE Transactions on, 2003, 12(1):1-15.
[25] LIAO S, ZHAO G, KELLOKUMPU V, et al. Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes[C] //Proceedings of the 23th IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA:IEEE, 2010:1301-1306.
[26] TAN X,TRIGGS B. Enhanced local texture feature sets for face recognition under difficult lighting conditions[J]. IEEE transaction on Image Processing, 2010, 19(6):1635-1650.
[1] 王国新,陈凤东,刘国栋. 基于彩色伪随机编码结构光特征提取方法[J]. 山东大学学报 (工学版), 2018, 48(5): 55-60.
[2] 叶子云,杨金锋. 一种基于加权图模型的手指静脉识别方法[J]. 山东大学学报(工学版), 2018, 48(3): 103-109.
[3] 张振月,李斐,江铭炎. 基于低秩表示投影的无监督人脸特征提取[J]. 山东大学学报(工学版), 2018, 48(1): 15-20.
[4] 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95.
[5] 郭超,杨燕,江永全,宋祎. 基于多视图分类集成的高铁工况识别[J]. 山东大学学报(工学版), 2017, 47(1): 7-14.
[6] 卢丹, 周以齐. 基于EEMD和CWT的挖掘机座椅振动分析[J]. 山东大学学报(工学版), 2015, 45(3): 58-64.
[7] 于海晶1,2, 李桂菊1*. 基于差分盒维数的彩色烟雾图像识别[J]. 山东大学学报(工学版), 2014, 44(1): 35-40.
[8] 李慧1,2,胡云1,3,李存华1. 基于粗糙集理论的瓦斯灾害信息特征提取技术[J]. 山东大学学报(工学版), 2012, 42(5): 91-95.
[9] 曹红根1,袁宝华1,朱辉生2. 结合对比度信息与LBP的分块人脸识别[J]. 山东大学学报(工学版), 2012, 42(4): 29-34.
[10] 张思懿1,2,王士同1*. 核化空间深度间距的特征提取方法[J]. 山东大学学报(工学版), 2012, 42(3): 45-51.
[11] 王江宁, 纪力强. 昆虫图像特征研究[J]. 山东大学学报(工学版), 2011, 41(2): 51-57.
[12] 张训华1,业宁2,王厚立3. 基于Harris角点的木材CT图像配准[J]. 山东大学学报(工学版), 2010, 40(5): 101-104.
[13] 董乃鹏 赵合计 SCHOMMER Christoph. 作者写作特征提取引擎[J]. 山东大学学报(工学版), 2009, 39(5): 27-31.
[14] 孙殿柱,朱昌志,李延瑞 . 散乱点云边界特征快速提取算法[J]. 山东大学学报(工学版), 2009, 39(1): 84-86.
[15] 张丽梅1,2 ,乔立山1,2 ,陈松灿1 . 基于张量模式的特征提取及分类器设计综述[J]. 山东大学学报(工学版), 2009, 39(1): 6-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[2] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[3] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[4] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[5] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[6] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[7] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[8] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[9] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .
[10] 赵勇 田四明 曹哲明. 宜万铁路复杂岩溶隧道施工地质工作方法[J]. 山东大学学报(工学版), 2009, 39(5): 91 -95 .